Suppr超能文献

在两个加密数据库上进行隐私保护的神经网络插值。

Privacy-preserving -NN interpolation over two encrypted databases.

作者信息

Osmanoglu Murat, Demir Salih, Tugrul Bulent

机构信息

Department of Computer Engineering, Ankara University, Ankara, Turkey.

出版信息

PeerJ Comput Sci. 2022 May 31;8:e965. doi: 10.7717/peerj-cs.965. eCollection 2022.

Abstract

Cloud computing enables users to outsource their databases and the computing functionalities to a cloud service provider to avoid the cost of maintaining a private storage and computational requirements. It also provides universal access to data, applications, and services without location dependency. While cloud computing provides many benefits, it possesses a number of security and privacy concerns. Outsourcing data to a cloud service provider in encrypted form may help to overcome these concerns. However, dealing with the encrypted data makes it difficult for the cloud service providers to perform some operations over the data that will especially be required in query processing tasks. Among the techniques employed in query processing task, the -nearest neighbor method draws attention due to its simplicity and efficiency, particularly on massive data sets. A number of -nearest neighbor algorithms for query processing task on a single encrypted database have been proposed. However, the performance of -nearest neighbor algorithms on a single database may create accuracy and reliability problems. It is a fact that collaboration among different cloud service providers yields more accurate and more reliable results in query processing. By considering this fact, we focus on the -nearest neighbor (-NN) problem over two encrypted databases. We introduce a secure two-party -NN interpolation protocol that enables a query owner to extract the interpolation of the -nearest neighbors of a query point from two different databases outsourced to two different cloud service providers. We also show that our protocol protects the confidentiality of the data and the query point, and hides data access patterns. Furthermore, we conducted a number of experiment to demonstrate the efficiency of our protocol. The results show that the running time of our protocol is linearly dependent on both the number of nearest neighbours and data size.

摘要

云计算使用户能够将其数据库和计算功能外包给云服务提供商,以避免维护私有存储和计算需求的成本。它还提供对数据、应用程序和服务的通用访问,而不受位置限制。虽然云计算带来了许多好处,但它也存在一些安全和隐私问题。以加密形式将数据外包给云服务提供商可能有助于克服这些问题。然而,处理加密数据使得云服务提供商难以对数据执行某些操作,而这些操作在查询处理任务中尤为必要。在查询处理任务中采用的技术中,-最近邻方法因其简单性和效率而备受关注,特别是在处理海量数据集时。已经提出了许多用于在单个加密数据库上进行查询处理任务的-最近邻算法。然而,单个数据库上的-最近邻算法的性能可能会产生准确性和可靠性问题。事实上,不同云服务提供商之间的协作在查询处理中能产生更准确、更可靠的结果。考虑到这一事实,我们专注于在两个加密数据库上解决-最近邻(-NN)问题。我们引入了一种安全的两方-NN插值协议,该协议使查询所有者能够从外包给两个不同云服务提供商的两个不同数据库中提取查询点的-最近邻的插值。我们还表明,我们的协议保护数据和查询点的机密性,并隐藏数据访问模式。此外,我们进行了大量实验来证明我们协议的效率。结果表明,我们协议的运行时间与最近邻数量和数据大小均呈线性相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e6/9202633/7560663f5a35/peerj-cs-08-965-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验