Suppr超能文献

基于改进鲸鱼优化算法优化的门控循环单元神经网络的海参养殖水质预测

Water quality prediction in sea cucumber farming based on a GRU neural network optimized by an improved whale optimization algorithm.

作者信息

Yang Huanhai, Liu Shue

机构信息

School of Computer Science and Technology, Shandong Technology and Business University, Yantai, Shandong, China.

Binzhou Medical University, Yantai, Shandong, China.

出版信息

PeerJ Comput Sci. 2022 May 31;8:e1000. doi: 10.7717/peerj-cs.1000. eCollection 2022.

Abstract

Sea cucumber farming is an important part of China's aquaculture industry, and sea cucumbers have higher requirements for aquaculture water quality. This article proposes a sea cucumber aquaculture water quality prediction model that uses an improved whale optimization algorithm to optimize the gated recurrent unit neural network(IWOA-GRU), which provides a reference for the water quality control in the sea cucumber growth environment. This model first applies variational mode decomposition (VMD) and the wavelet threshold joint denoising method to remove mixed noise in water quality time series. Then, by optimizing the convergence factor, the convergence speed and global optimization ability of the whale optimization algorithm are strengthened. Finally, the improved whale optimization algorithm is used to construct a GRU prediction model based on optimal network weights and thresholds to predict sea cucumber farming water quality. The model was trained and tested using three water quality indices (dissolved oxygen, temperature and salinity) of sea cucumber culture waters in Shandong Peninsula, China, and compared with prediction models such as support vector regression (SVR), random forest (RF), convolutional neural network (CNN), recurrent neural network (RNN), and long short-term memory neural network (LSTM). Experimental results show that the prediction accuracy and generalization performance of this model are better than those of the other compared models.

摘要

海参养殖是中国水产养殖业的重要组成部分,海参对养殖水质有较高要求。本文提出了一种利用改进的鲸鱼优化算法优化门控循环单元神经网络(IWOA-GRU)的海参养殖水质预测模型,为海参生长环境中的水质控制提供参考。该模型首先应用变分模态分解(VMD)和小波阈值联合去噪方法去除水质时间序列中的混合噪声。然后,通过优化收敛因子,增强鲸鱼优化算法的收敛速度和全局优化能力。最后,利用改进的鲸鱼优化算法构建基于最优网络权重和阈值的GRU预测模型,对海参养殖水质进行预测。利用中国山东半岛海参养殖水域的溶解氧、温度和盐度三个水质指标对该模型进行训练和测试,并与支持向量回归(SVR)、随机森林(RF)、卷积神经网络(CNN)、循环神经网络(RNN)和长短期记忆神经网络(LSTM)等预测模型进行比较。实验结果表明,该模型的预测精度和泛化性能优于其他对比模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07de/9202628/ceadc1d84013/peerj-cs-08-1000-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验