Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat, Oman.
Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Alabama, USA.
J Environ Manage. 2024 May;358:120756. doi: 10.1016/j.jenvman.2024.120756. Epub 2024 Apr 9.
Water quality indicators (WQIs), such as chlorophyll-a (Chl-a) and dissolved oxygen (DO), are crucial for understanding and assessing the health of aquatic ecosystems. Precise prediction of these indicators is fundamental for the efficient administration of rivers, lakes, and reservoirs. This research utilized two unique DL algorithms-namely, convolutional neural network (CNNs) and gated recurrent units (GRUs)-alongside their amalgamation, CNN-GRU, to precisely gauge the concentration of these indicators within a reservoir. Moreover, to optimize the outcomes of the developed hybrid model, we considered the impact of a decomposition technique, specifically the wavelet transform (WT). In addition to these efforts, we created two distinct machine learning (ML) algorithms-namely, random forest (RF) and support vector regression (SVR)-to demonstrate the superior performance of deep learning algorithms over individual ML ones. We initially gathered WQIs from diverse locations and varying depths within the reservoir using an AAQ-RINKO device in the study area to achieve this. It is important to highlight that, despite utilizing diverse data-driven models in water quality estimation, a significant gap persists in the existing literature regarding implementing a comprehensive hybrid algorithm. This algorithm integrates the wavelet transform, convolutional neural network (CNN), and gated recurrent unit (GRU) methodologies to estimate WQIs accurately within a spatiotemporal framework. Subsequently, the effectiveness of the models that were developed was assessed utilizing various statistical metrics, encompassing the correlation coefficient (r), root mean square error (RMSE), mean absolute error (MAE), and Nash-Sutcliffe efficiency (NSE) throughout both the training and testing phases. The findings demonstrated that the WT-CNN-GRU model exhibited better performance in comparison with the other algorithms by 13% (SVR), 13% (RF), 9% (CNN), and 8% (GRU) when R-squared and DO were considered as evaluation indices and WQIs, respectively.
水质指标(WQIs),如叶绿素-a(Chl-a)和溶解氧(DO),对于了解和评估水生态系统的健康状况至关重要。准确预测这些指标对于河流、湖泊和水库的有效管理至关重要。本研究利用两种独特的深度学习算法——卷积神经网络(CNNs)和门控循环单元(GRUs)及其组合 CNN-GRU,精确估算水库中这些指标的浓度。此外,为了优化所开发的混合模型的结果,我们考虑了分解技术的影响,特别是小波变换(WT)。除了这些努力,我们还创建了两种不同的机器学习(ML)算法——随机森林(RF)和支持向量回归(SVR)——以证明深度学习算法比单个 ML 算法具有更好的性能。我们最初使用 AAQ-RINKO 设备在研究区域内从不同位置和水库不同深度采集 WQIs 来实现这一目标。需要强调的是,尽管在水质估计中使用了不同的数据驱动模型,但在现有文献中,实施全面的混合算法仍然存在显著差距。该算法集成了小波变换、卷积神经网络(CNN)和门控循环单元(GRU)方法,可在时空框架内准确估计 WQIs。随后,我们使用各种统计指标评估所开发模型的有效性,包括训练和测试阶段的相关系数(r)、均方根误差(RMSE)、平均绝对误差(MAE)和纳什-苏特克里夫效率(NSE)。研究结果表明,与其他算法相比,WT-CNN-GRU 模型在 R 平方和 DO 分别作为评估指标和 WQIs 时,性能提高了 13%(SVR)、13%(RF)、9%(CNN)和 8%(GRU)。