Northeastern University, Department of Bioengineering, Boston, Massachusetts, United States.
J Biomed Opt. 2022 Jun;27(6). doi: 10.1117/1.JBO.27.6.067001.
"Diffuse in vivo flow cytometry" (DiFC) is an emerging technology for fluorescence detection of rare circulating cells directly in large deep-seated blood vessels in mice. Because DiFC uses highly scattered light, in principle, it could be translated to human use. However, an open question is whether fluorescent signals from single cells would be detectable in human-scale anatomies.
Suitable blood vessels in a human wrist or forearm are at a depth of ∼2 to 4 mm. The aim of this work was to study the impact of DiFC instrument geometry and wavelength on the detected DiFC signal and on the maximum depth of detection of a moving cell.
We used Monte Carlo simulations to compute fluorescence Jacobian (sensitivity) matrices for a range of source and detector separations (SDS) and tissue optical properties over the visible and near infrared spectrum. We performed experimental measurements with three available versions of DiFC (488, 640, and 780 nm), fluorescent microspheres, and tissue mimicking optical flow phantoms. We used both computational and experimental data to estimate the maximum depth of detection at each combination of settings.
For the DiFC detection problem, our analysis showed that for deep-seated blood vessels, the maximum sensitivity was obtained with NIR light (780 nm) and 3-mm SDS.
These results suggest that-in combination with a suitable molecularly targeted fluorescent probes-circulating cells and nanosensors could, in principle, be detectable in circulation in humans.
“体内弥散流式细胞术”(DiFC)是一种新兴的荧光检测技术,可直接在小鼠的大深层血管中检测稀有循环细胞。由于 DiFC 使用高度散射光,原则上可以转化为人类使用。然而,一个悬而未决的问题是,单个细胞的荧光信号是否可以在人体尺度的解剖结构中检测到。
人类手腕或前臂的合适血管深度约为 2 至 4 毫米。这项工作的目的是研究 DiFC 仪器几何形状和波长对检测到的 DiFC 信号以及移动细胞的最大检测深度的影响。
我们使用蒙特卡罗模拟计算了一系列源和探测器分离(SDS)和组织光学特性在可见和近红外光谱范围内的荧光雅可比(灵敏度)矩阵。我们使用三种可用的 DiFC 版本(488、640 和 780nm)、荧光微球和组织模拟光学流动体模进行了实验测量。我们使用计算和实验数据来估计每种设置组合的最大检测深度。
对于 DiFC 检测问题,我们的分析表明,对于深层血管,最大灵敏度是在近红外光(780nm)和 3mm SDS 下获得的。
这些结果表明,结合合适的分子靶向荧光探针,循环细胞和纳米传感器原则上可以在人类循环中检测到。