Suppr超能文献

自动识别慢性阿片类药物治疗的非癌症患者中的阿片类药物使用障碍。

Automatically identifying opioid use disorder in non-cancer patients on chronic opioid therapy.

机构信息

Biomedical Informatics Center, Department of Public Health Science, College of Medicine, 2345Medical University of South Carolina, Charleston, SC, USA.

Department of Psychiatry and Behavioral Science, College of Medicine, 2345Medical University of South Carolina, Charleston, SC, USA.

出版信息

Health Informatics J. 2022 Apr-Jun;28(2):14604582221107808. doi: 10.1177/14604582221107808.

Abstract

Using the International Classification of Diseases (ICD) codes alone to record opioid use disorder (OUD) may not completely document OUD in the electronic health record (EHR). We developed and evaluated natural language processing (NLP) approaches to identify OUD from the clinal note. We explored the concordance between ICD-coded and NLP-identified OUD. We studied EHRs from 13,654 (female: 8223; male: 5431) adult non-cancer patients who received chronic opioid therapy (COT) and had at least one clinical note between 2013 and 2018. Of eligible patients, we randomly selected 10,218 (75%) patients as the training set and the remaining 3436 patients (25%) as the test dataset for NLP approaches. We generated 539 terms representing OUD mentions in clinical notes (e.g., "opioid use disorder," "opioid abuse," "opioid dependence," "opioid overdose") and 73 terms representing OUD medication treatments. By domain expert manual review for the test dataset, our NLP approach yielded high performance: 98.5% for precision, 100% for recall, and 99.2% for F-measure. The concordance of these NLP and ICD identified OUD was modest (Kappa = 0.63). Our NLP approach can accurately identify OUD patients from clinical notes. The combined use of ICD diagnostic code and NLP approach can improve OUD identification.

摘要

仅使用国际疾病分类(ICD)代码来记录阿片类药物使用障碍(OUD)可能无法在电子健康记录(EHR)中完整记录 OUD。我们开发并评估了自然语言处理(NLP)方法,以从临床记录中识别 OUD。我们探讨了 ICD 编码和 NLP 识别的 OUD 之间的一致性。我们研究了 13654 名(女性:8223 名;男性:5431 名)接受慢性阿片类药物治疗(COT)且在 2013 年至 2018 年期间至少有一条临床记录的成年非癌症患者的 EHR。在符合条件的患者中,我们随机选择了 10218 名(75%)患者作为训练集,其余 3436 名(25%)患者作为测试数据集用于 NLP 方法。我们生成了 539 个代表临床记录中 OUD 提及的术语(例如,“阿片类药物使用障碍”、“阿片类药物滥用”、“阿片类药物依赖”、“阿片类药物过量”)和 73 个代表 OUD 药物治疗的术语。通过对测试数据集的领域专家手动审查,我们的 NLP 方法具有很高的性能:精确率为 98.5%,召回率为 100%,F1 分数为 99.2%。这些 NLP 和 ICD 识别的 OUD 之间的一致性是适度的(Kappa = 0.63)。我们的 NLP 方法可以从临床记录中准确识别 OUD 患者。ICD 诊断代码和 NLP 方法的结合使用可以提高 OUD 的识别率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8b3/10826411/d1d3888dc60c/nihms-1960828-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验