Department of General Surgery & Institute of General Surgery, Chinese PLA General Hospital First Medical Center, Beijing, 100853, China.
State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
Int J Biol Macromol. 2022 Aug 1;214:381-390. doi: 10.1016/j.ijbiomac.2022.06.114. Epub 2022 Jun 18.
Studies on the structure-function relationship of protein greatly help to understand not only the principles of protein folding but also the rationales of protein engineering. Crenarchaeal chromatin protein Cren7 provides an excellent research model for this issue. The small protein adopts a 'β-barrel' fold, formed by the double-stranded antiparallel β-sheet 1 tightly packing with the triple-stranded antiparallel β-sheet 2. The simple structure of Cren7 is stabilized by the hydrophobic core between the β-sheets, consisting of the side chains of V8, V10, L20, V25, F41 and F50. In the present work, mutation analyses by alanine substitution of each of the residues in the hydrophobic core were performed. Circular dichroism spectra and nuclear magnetic resonance analyses showed that mutation of F41 led to a significant misfolding of Cren7 through disruption of the β-sheets. Meanwhile, the mutant F41A showed a reduced thermostatility (Tm of 53.2 °C), as compared with the wild-type Cren7 (Tm > 80 °C). Biolayer interferometry and nick-closure assays showed the largely unchanged activities in DNA binding and supercoiling of F41A, indicating the DNA interface of Cren7 was generally retained in F41A. However, F41A was unable to mediate DNA bridging, probably due to the impairment in forming oligomers/polymers on DNA. Atomic force microscopic images of the F41A-DNA complexes also revealed that F41A nearly completely lost the ability to compact DNA into highly condensed structures. Our results not only reveal the critical role of F41 in protein folding of Cren7 but also provide new insights into the structure-function relationships of thermostable proteins.
关于蛋白质结构与功能关系的研究不仅有助于理解蛋白质折叠的原理,还有助于理解蛋白质工程的原理。古菌染色质蛋白 Cren7 为此提供了一个极好的研究模型。该小蛋白采用“β-桶”折叠,由双链反平行β-片层 1 与三链反平行β-片层 2 紧密堆积形成。Cren7 的简单结构由β-片层之间的疏水性核心稳定,由 V8、V10、L20、V25、F41 和 F50 的侧链组成。在本工作中,通过对疏水性核心中每个残基的丙氨酸取代突变进行分析。圆二色光谱和核磁共振分析表明,F41 突变导致 Cren7 明显错误折叠,破坏了β-片层。同时,突变体 F41A 的热稳定性降低(Tm 为 53.2°C),而野生型 Cren7 的 Tm 大于 80°C。生物层干涉法和缺口封闭实验表明,F41A 在 DNA 结合和超螺旋方面的活性基本不变,表明 Cren7 的 DNA 界面在 F41A 中基本保留。然而,F41A 不能介导 DNA 桥接,可能是由于在 DNA 上形成寡聚物/聚合物的能力受损。F41A-DNA 复合物的原子力显微镜图像也表明,F41A 几乎完全丧失了将 DNA 压缩成高度浓缩结构的能力。我们的研究结果不仅揭示了 F41 在 Cren7 蛋白折叠中的关键作用,还为热稳定蛋白的结构-功能关系提供了新的见解。