Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Nat Commun. 2022 Jun 21;13(1):3548. doi: 10.1038/s41467-022-31336-x.
Despite the fact that proteins carry out nearly all cellular functions and mark the differences of cells, the existing single-cell tools can only analyze dozens of proteins, a scale far from full characterization of cells and tissue yet. Herein, we present a single-cell cyclic multiplex in situ tagging (CycMIST) technology that affords the comprehensive functional proteome profiling of single cells. We demonstrate the technology by detecting 182 proteins that include surface markers, neuron function proteins, neurodegeneration markers, signaling pathway proteins, and transcription factors. Further studies on cells derived from the 5XFAD mice, an Alzheimer's Disease (AD) model, validate the utility of our technology and reveal the deep heterogeneity of brain cells. Through comparison with control mouse cells, we have identified differentially expressed proteins in AD pathology. Our technology could offer new insights into cell machinery and thus may advance many fields including drug discovery, molecular diagnostics, and clinical studies.
尽管蛋白质执行着几乎所有的细胞功能,并标记着细胞的差异,但现有的单细胞工具只能分析几十种蛋白质,这一规模还远远不能全面描述细胞和组织。在此,我们提出了一种单细胞循环多重原位标记(CycMIST)技术,该技术能够对单细胞进行全面的功能蛋白质组分析。我们通过检测 182 种蛋白质来证明该技术的有效性,这些蛋白质包括表面标记物、神经元功能蛋白、神经退行性标记物、信号通路蛋白和转录因子。对源自阿尔茨海默病(AD)模型 5XFAD 小鼠的细胞的进一步研究验证了我们技术的实用性,并揭示了脑细胞的深度异质性。通过与对照小鼠细胞的比较,我们已经确定了 AD 病理中的差异表达蛋白。我们的技术可以为细胞机制提供新的见解,从而可能推动包括药物发现、分子诊断和临床研究在内的多个领域的发展。