Suppr超能文献

通过生物启发的自由基配体转移催化对未活化烯烃的模块化双官能化。

Modular Difunctionalization of Unactivated Alkenes through Bio-Inspired Radical Ligand Transfer Catalysis.

机构信息

Department of Chemistry, Rice University, 6500 Main St, Houston, Texas 77030, United States.

Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China.

出版信息

J Am Chem Soc. 2022 Jul 6;144(26):11810-11821. doi: 10.1021/jacs.2c04188. Epub 2022 Jun 21.

Abstract

Development of visible light-mediated atom transfer radical addition of haloalkanes onto unsaturated hydrocarbons has seen rapid growth in recent years. However, due to its radical chain propagation mechanism, diverse functionality other than the pre-existing (pseudo-)halide on the alkyl halide source cannot be incorporated into target molecules in a one-step, economic fashion. Inspired by the prominent reactivities shown by cytochrome P450 hydroxylase and non-heme iron-dependent oxygenases, we herein report the first modular, dual catalytic difunctionalization of unactivated alkenes via manganese-catalyzed radical ligand transfer (RLT). This RLT elementary step involves a coordinated nucleophile rebounding to a carbon-centered radical to form a new C-X bond in analogy to the radical rebound step in metalloenzymes. The protocol leverages the synergetic cooperation of both a photocatalyst and earth-abundant manganese complex to deliver two radical species in succession to minimally functionalized alkenes, enabling modular diversification of the radical intermediate by a high-valent manganese species capable of delivering various external nucleophiles. A broad scope (97 examples, including drugs/natural product motifs), mild conditions, and excellent chemoselectivity were shown for a variety of substrates and fluoroalkyl fragments. Mechanistic and kinetics studies provide insights into the radical nature of the dual catalytic transformation and support radical ligand transfer (RLT) as a new strategy to deliver diverse functionality selectively to carbon-centered radicals.

摘要

近年来,可见光介导的卤代烷烃与不饱和烃的原子转移自由基加成反应发展迅速。然而,由于其自由基链增长机制,除了烷基卤化物源中原有的(假)卤化物之外,其他不同的官能团无法以一步经济的方式有效地结合到目标分子中。受细胞色素 P450 羟化酶和非血红素铁依赖性加氧酶表现出的显著反应性的启发,我们在此报告了首例通过锰催化的自由基配体转移(RLT)对未活化烯烃的模块化、双催化双官能化。这种 RLT 基元步骤涉及到协同的亲核试剂反弹到碳中心自由基上,形成一个新的 C-X 键,类似于金属酶中的自由基反弹步骤。该方案利用光催化剂和丰富的地球锰络合物的协同合作,连续向最小功能化的烯烃提供两种自由基物种,使自由基中间体能够通过高价锰物种进行模块化多样化,该高价锰物种能够提供各种外部亲核试剂。该反应具有广泛的底物范围(97 个实例,包括药物/天然产物母核)、温和的条件和出色的化学选择性。机理和动力学研究为双催化转化的自由基性质提供了深入的了解,并支持自由基配体转移(RLT)作为一种向碳中心自由基选择性地提供不同官能团的新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验