Suppr超能文献

基于深度学习方法的左心室参数估计。

Estimation of left ventricular parameters based on deep learning method.

机构信息

Xi'an Key Laboratory of Scientific Computation and Applied Statistics, Xi'an 710129, China.

NPU-UoG International Cooperative Lab for Computation and Application in Cardiology, Xi'an 710129, China.

出版信息

Math Biosci Eng. 2022 Apr 27;19(7):6638-6658. doi: 10.3934/mbe.2022312.

Abstract

Estimating material properties of personalized human left ventricular (LV) modelling is a central problem in biomechanical studies. In this work we use deep learning (DL) method to evaluating the passive myocardial mechanical properties inversely. In the first part of the paper, we establish a standardized geometric model of the LV. The geometric model parameters are optimized based on 27 different healthy volunteers. In the second part, we use statistical methods and Latin hypercube sampling (LHS) to obtain the geometric parameters data. The LV myocardium is described using a structure-based orthotropic Holzapfel-Ogden constitutive law. The LV diastolic pressure-volume (PV) curves are calculated by numerical simulation. Tn the third part, we establish the multiple neural networks to pblackict PV curve parameters. Then, instead of using constrained optimization problems to solve constitutive parameters, DL was used to establish the nonlinear mapping relationship of geometric parameters, PV curve parameters and constitutive parameters. The results show that the deep learning method can greatly improve the computational efficiency of numerical simulation and increase the possibility of its application in rapid feedback of clinical data.

摘要

估计个性化左心室(LV)建模的材料特性是生物力学研究中的一个核心问题。在这项工作中,我们使用深度学习(DL)方法来进行反向评估被动心肌力学特性。在论文的第一部分,我们建立了 LV 的标准化几何模型。该几何模型的参数是基于 27 位不同的健康志愿者进行优化的。在第二部分,我们使用统计方法和拉丁超立方采样(LHS)来获取几何参数数据。LV 心肌采用基于结构的各向异性 Holzapfel-Ogden 本构定律进行描述。通过数值模拟计算 LV 舒张压力-容积(PV)曲线。在第三部分,我们建立了多个神经网络来预测 PV 曲线参数。然后,我们使用深度学习方法来建立几何参数、PV 曲线参数和本构参数的非线性映射关系,而不是使用约束优化问题来求解本构参数。研究结果表明,深度学习方法可以大大提高数值模拟的计算效率,并增加其在临床数据快速反馈中的应用可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验