School of Mathematics and Statistics, Univeristy of Glasgow, Glasgow, UK.
British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
Artif Intell Med. 2021 Sep;119:102140. doi: 10.1016/j.artmed.2021.102140. Epub 2021 Aug 11.
Combining biomechanical modelling of left ventricular (LV) function and dysfunction with cardiac magnetic resonance (CMR) imaging has the potential to improve the prognosis of patient-specific cardiovascular disease risks. Biomechanical studies of LV function in three dimensions usually rely on a computerized representation of the LV geometry based on finite element discretization, which is essential for numerically simulating in vivo cardiac dynamics. Detailed knowledge of the LV geometry is also relevant for various other clinical applications, such as assessing the LV cavity volume and wall thickness. Accurately and automatically reconstructing personalized LV geometries from conventional CMR images with minimal manual intervention is still a challenging task, which is a pre-requisite for any subsequent automated biomechanical analysis. We propose a deep learning-based automatic pipeline for predicting the three-dimensional LV geometry directly from routinely-available CMR cine images, without the need to manually annotate the ventricular wall. Our framework takes advantage of a low-dimensional representation of the high-dimensional LV geometry based on principal component analysis. We analyze how the inference of myocardial passive stiffness is affected by using our automatically generated LV geometries instead of manually generated ones. These insights will inform the development of statistical emulators of LV dynamics to avoid computationally expensive biomechanical simulations. Our proposed framework enables accurate LV geometry reconstruction, outperforming previous approaches by delivering a reconstruction error 50% lower than reported in the literature. We further demonstrate that for a nonlinear cardiac mechanics model, using our reconstructed LV geometries instead of manually extracted ones only moderately affects the inference of passive myocardial stiffness described by an anisotropic hyperelastic constitutive law. The developed methodological framework has the potential to make an important step towards personalized medicine by eliminating the need for time consuming and costly manual operations. In addition, our method automatically maps the CMR scan into a low-dimensional representation of the LV geometry, which constitutes an important stepping stone towards the development of an LV geometry-heterogeneous emulator.
将左心室(LV)功能和功能障碍的生物力学建模与心脏磁共振(CMR)成像相结合,有可能改善患者特定心血管疾病风险的预后。LV 功能的三维生物力学研究通常依赖于基于有限元离散化的 LV 几何形状的计算机表示,这对于数值模拟体内心脏动力学至关重要。LV 几何形状的详细知识也与各种其他临床应用相关,例如评估 LV 腔体积和壁厚度。从常规 CMR 图像中自动且准确地重建个性化的 LV 几何形状,而无需进行最小的手动干预,仍然是一项具有挑战性的任务,这是任何后续自动化生物力学分析的前提。我们提出了一种基于深度学习的自动流水线,可直接从常规 CMR 电影图像预测三维 LV 几何形状,而无需手动标记心室壁。我们的框架利用基于主成分分析的高维 LV 几何形状的低维表示。我们分析了使用我们自动生成的 LV 几何形状代替手动生成的 LV 几何形状来推断心肌被动刚度会受到什么影响。这些见解将为 LV 动力学的统计仿真器的开发提供信息,以避免计算昂贵的生物力学模拟。我们提出的框架能够实现准确的 LV 几何形状重建,其重建误差比文献中报道的低 50%,优于以前的方法。我们进一步证明,对于非线性心脏力学模型,使用我们重建的 LV 几何形状代替手动提取的 LV 几何形状,仅适度影响各向异性超弹性本构律描述的被动心肌刚度的推断。所开发的方法框架有可能通过消除耗时且昂贵的手动操作的需求,在迈向个性化医疗方面迈出重要一步。此外,我们的方法自动将 CMR 扫描映射到 LV 几何形状的低维表示,这是开发 LV 几何形状异质仿真器的重要垫脚石。