Suppr超能文献

香港基层医疗中的发病模式:基于实践的发病率调查方案。

Morbidity Patterns in Primary Care in Hong Kong: Protocol for a Practice-Based Morbidity Survey.

作者信息

Chen Julie Yun, Chao David, Wong Samuel Yeung-Shan, Tse Tsui Yee Emily, Wan Eric Yuk Fai, Tsang Joyce Pui Yan, Leung Maria Kwan Wa, Ko Welchie, Li Yim-Chu, Chen Catherine, Luk Wan, Dao Man-Chi, Wong Michelle, Leung Wing Mun, Lam Cindy Lo Kuen

机构信息

Department of Family Medicine and Primary Care, The University of Hong Kong, Hong Kong, China (Hong Kong).

The Hong Kong College of Family Physicians, Hong Kong, China (Hong Kong).

出版信息

JMIR Res Protoc. 2022 Jun 22;11(6):e37334. doi: 10.2196/37334.

Abstract

BACKGROUND

Up-to-date and accurate information about the health problems encountered by primary care doctors is essential to understanding the morbidity pattern of the community to better inform health care policy and practice. Morbidity surveys of doctors allow documentation of actual consultations, reflecting the patient's reason for seeking care as well as the doctor's diagnostic interpretation of the illness and management approach. Such surveys are particularly critical in the absence of a centralized primary care electronic medical record database.

OBJECTIVE

With the changing sociodemographic profile of the population and implementation of health care initiatives in the past 10 years, the aim of this study is to determine the morbidity and management patterns in Hong Kong primary care during a pandemic and compare the results with the last survey conducted in 2007-2008.

METHODS

This will be a prospective, practice-based survey of Hong Kong primary care doctors. Participants will be recruited by convenience and targeted sampling from both public and private sectors. Participating doctors will record the health problems and corresponding management activities for consecutive patient encounters during one designated week in each season of the year. Coding of health problems will follow the International Classification of Primary Care, Second Edition. Descriptive statistics will be used to calculate the prevalence of health problems and diseases as well as the rates of management activities (referral, investigation, prescription, preventive care). Nonlinear mixed effects models will assess the differences between the private and public sectors as well as factors associated with morbidity and management patterns in primary care.

RESULTS

The data collection will last from March 1, 2021, to August 31, 2022. As of April 2022, 176 doctor-weeks of data have been collected.

CONCLUSIONS

The results will provide information about the health of the community and inform the planning and allocation of health care resources.

TRIAL REGISTRATION

ClinicalTrials.gov NCT04736992; https://clinicaltrials.gov/ct2/show/NCT04736992.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/37334.

摘要

背景

获取有关基层医疗医生所遇到的健康问题的最新且准确的信息,对于了解社区的发病模式以更好地为医疗保健政策和实践提供依据至关重要。对医生进行发病率调查能够记录实际的诊疗情况,反映患者就诊的原因以及医生对疾病的诊断解读和管理方法。在缺乏集中式基层医疗电子病历数据库的情况下,此类调查尤为关键。

目的

鉴于过去10年人口社会人口统计学特征的变化以及医疗保健举措的实施,本研究旨在确定香港基层医疗在疫情期间的发病情况和管理模式,并将结果与2007 - 2008年进行的上次调查进行比较。

方法

这将是一项针对香港基层医疗医生的基于实践的前瞻性调查。参与者将通过便利抽样和目标抽样从公共和私营部门招募。参与调查的医生将在一年中每个季节的一个指定周内,记录连续患者就诊时的健康问题及相应的管理活动。健康问题的编码将遵循《国际基层医疗分类(第二版)》。描述性统计将用于计算健康问题和疾病的患病率以及管理活动(转诊、检查、处方、预防保健)的发生率。非线性混合效应模型将评估私营和公共部门之间的差异以及与基层医疗发病和管理模式相关的因素。

结果

数据收集将从2021年3月1日持续到2022年8月31日。截至2022年4月,已收集到176个医生周的数据。

结论

研究结果将提供有关社区健康的信息,并为医疗保健资源的规划和分配提供依据。

试验注册

ClinicalTrials.gov NCT04736992;https://clinicaltrials.gov/ct2/show/NCT04736992。

国际注册报告识别码(IRRID):DERR1 - 10.2196/37334。

相似文献

本文引用的文献

10
A morbidity survey of South African primary care.南非初级保健的发病率调查。
PLoS One. 2012;7(3):e32358. doi: 10.1371/journal.pone.0032358. Epub 2012 Mar 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验