Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada.
SaniMarc Group, Victoriaville, QC, G6P 7E3, Canada.
Metallomics. 2022 Jul 20;14(7). doi: 10.1093/mtomcs/mfac044.
Severe acute respiratory syndrome (SARS) is a viral respiratory infection caused by human coronaviruses that include SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV). Although their primary mode of transmission is through contaminated respiratory droplets from infected carriers, the deposition of expelled virus particles onto surfaces and fomites could contribute to viral transmission. Here, we use replication-deficient murine leukemia virus (MLV) pseudoviral particles expressing SARS-CoV-2, SARS-CoV, or MERS-CoV Spike (S) protein on their surface. These surrogates of native coronavirus counterparts serve as a model to analyze the S-mediated entry into target cells. Carboxymethyl cellulose (CMC) nanofibers that are combined with copper (Cu) exhibit strong antimicrobial properties. S-pseudovirions that are exposed to CMC-Cu nanoparticles (30 s) display a dramatic reduction in their ability to infect target Vero E6 cells, with ∼97% less infectivity as compared to untreated pseudovirions. In contrast, addition of the Cu chelator tetrathiomolybdate protects S-pseudovirions from CMC-Cu-mediated inactivation. When S-pseudovirions were treated with a hydrogen peroxide-based disinfectant (denoted SaberTM) used at 1:250 dilution, their infectivity was dramatically reduced by ∼98%. However, the combined use of SaberTM and CMC-Cu is the most effective approach to restrict infectivity of SARS-CoV-2-S, SARS-CoV-S, and MERS-CoV-S pseudovirions in Vero E6 cell assays. Together, these results show that cellulosic Cu nanoparticles enhance the effectiveness of diluted SaberTM sanitizer, setting up an improved strategy to lower the risk of surface- and fomite-mediated transmission of enveloped respiratory viruses.
严重急性呼吸系统综合症(SARS)是一种由包括 SARS-CoV-2、SARS-CoV 和中东呼吸综合征冠状病毒(MERS-CoV)在内的人类冠状病毒引起的病毒性呼吸道感染。虽然它们的主要传播途径是通过感染载体的受污染的呼吸道飞沫,但喷出的病毒颗粒在表面和媒介物上的沉积可能会导致病毒传播。在这里,我们使用复制缺陷型鼠白血病病毒(MLV)假病毒颗粒,这些颗粒表面表达 SARS-CoV-2、SARS-CoV 或 MERS-CoV 的 Spike(S)蛋白。这些天然冠状病毒对应物的替代品可作为分析 S 介导的靶细胞进入的模型。与铜(Cu)结合的羧甲基纤维素(CMC)纳米纤维具有很强的抗菌性能。暴露于 CMC-Cu 纳米颗粒(30 秒)的 S-假病毒颗粒的感染靶标 Vero E6 细胞的能力显著降低,与未处理的假病毒颗粒相比,感染性降低了约 97%。相比之下,添加 Cu 螯合剂四硫钼酸盐可保护 S-假病毒颗粒免受 CMC-Cu 介导的失活。当用 1:250 稀释的基于过氧化氢的消毒剂(称为 SaberTM)处理 S-假病毒颗粒时,其感染性降低了约 98%。然而,SaberTM 和 CMC-Cu 的联合使用是限制 SARS-CoV-2-S、SARS-CoV-S 和 MERS-CoV-S 假病毒颗粒在 Vero E6 细胞测定中的感染性的最有效方法。总之,这些结果表明,纤维素 Cu 纳米颗粒增强了稀释后的 SaberTM 消毒剂的有效性,为降低包膜呼吸道病毒表面和媒介物传播的风险提供了一种改进的策略。