Suppr超能文献

来自阵列换能器的ARFI束的水听器空间平均伪像。

Hydrophone Spatial Averaging Artifacts for ARFI Beams from Array Transducers.

作者信息

Wear Keith, Shah Anant, Ivory Aoife M, Baker Christian

机构信息

US Food and Drug Administration, Silver Spring, MD, USA.

National Physical Laboratory, Teddington, U.K.

出版信息

IEEE Int Ultrason Symp. 2020;NA:1-4. doi: 10.1109/ius46767.2020.9251717.

Abstract

This paper reports underestimation of peak compressional pressure ( ), peak rarefactional pressure ( ), and pulse intensity integral () due to hydrophone spatial averaging of acoustic radiation force impulse (ARFI) beams generated by clinical linear and phased arrays. Although a method exists for correcting for hydrophone spatial averaging for circularly-symmetric beams, there is presently no analogous method for rectangularly-symmetric beams generated by linear and phased arrays. Consequently, pressure parameters ( , , and ) from clinical arrays are often not corrected for spatial averaging. This can lead to errors in Mechanical Index (MI) and Thermal Index (TI), which are derived from pressure measurements and are displayed in real-time during clinical ultrasound scans. ARFI beams were generated using three clinical linear array transducers. Output pressure waveforms for all three transducers were measured using five hydrophones with geometrical sensitive element sizes (d) ranging from 85 to 1000 μm. Spatial averaging errors were found to increase with hydrophone sensitive element size. For example, if d = 500 μm (typical membrane hydrophone), frequency = 2.25 MHz and F/# = 1.5, then average errors are approximately -20% (p), -10% (p), and -25% (pii). Therefore, due to hydrophone spatial averaging, typical membrane hydrophones can exhibit significant underestimation of ARFI pressure measurements, which likely compromises exposure safety indexes.

摘要

本文报道了由于临床线性阵列和相控阵产生的声辐射力脉冲(ARFI)束的水听器空间平均效应,导致峰值压缩压力( )、峰值稀疏压力( )和脉冲强度积分( )被低估。尽管存在一种用于校正圆形对称束的水听器空间平均效应的方法,但目前对于线性阵列和相控阵产生的矩形对称束,尚无类似方法。因此,临床阵列的压力参数( 、 和 )通常未进行空间平均校正。这可能导致机械指数(MI)和热指数(TI)出现误差,这两个指数是从压力测量中得出的,并在临床超声扫描期间实时显示。使用三个临床线性阵列换能器产生ARFI束。使用五个几何敏感元件尺寸(d)范围从85至1000μm的水听器测量所有三个换能器的输出压力波形。发现空间平均误差随水听器敏感元件尺寸增加。例如,如果d = 500μm(典型膜式水听器),频率 = 2.25MHz且F/# = 1.5,那么平均误差约为-20%( )、-10%( )和-25%( )。因此,由于水听器空间平均效应,典型膜式水听器可能会显著低估ARFI压力测量值,这可能会影响暴露安全指数。

相似文献

1
Hydrophone Spatial Averaging Artifacts for ARFI Beams from Array Transducers.
IEEE Int Ultrason Symp. 2020;NA:1-4. doi: 10.1109/ius46767.2020.9251717.
2
Hydrophone Spatial Averaging Correction for Acoustic Exposure Measurements From Arrays-Part II: Validation for ARFI and Pulsed Doppler Waveforms.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Mar;68(3):376-388. doi: 10.1109/TUFFC.2020.3037999. Epub 2021 Feb 25.
3
Hydrophone Spatial Averaging Correction for Acoustic Exposure Measurements From Arrays-Part I: Theory and Impact on Diagnostic Safety Indexes.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Mar;68(3):358-375. doi: 10.1109/TUFFC.2020.3037946. Epub 2021 Feb 25.
5
Correction for Hydrophone Spatial Averaging Artifacts for Circular Sources.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Dec;67(12):2674-2691. doi: 10.1109/TUFFC.2020.3007808. Epub 2020 Nov 24.
6
Correction for Spatial Averaging Artifacts in Hydrophone Measurements of High-Intensity Therapeutic Ultrasound: An Inverse Filter Approach.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Sep;66(9):1453-1464. doi: 10.1109/TUFFC.2019.2924351. Epub 2019 Jun 24.
7
Spatiotemporal Deconvolution of Hydrophone Response for Linear and Nonlinear Beams-Part I: Theory, Spatial-Averaging Correction Formulas, and Criteria for Sensitive Element Size.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Apr;69(4):1243-1256. doi: 10.1109/TUFFC.2022.3150186. Epub 2022 Mar 30.
8
Improved measurement of acoustic output using complex deconvolution of hydrophone sensitivity.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Jan;61(1):62-75. doi: 10.1109/TUFFC.2014.6689776.
9
Probing acoustic fields of clinically relevant transducers: the effect of hydrophone probes' finite apertures and bandwidths.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Oct;51(10):1262-70. doi: 10.1109/tuffc.2004.1350954.

引用本文的文献

1
Hydrophone Spatial Averaging Correction for Acoustic Exposure Measurements From Arrays-Part II: Validation for ARFI and Pulsed Doppler Waveforms.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Mar;68(3):376-388. doi: 10.1109/TUFFC.2020.3037999. Epub 2021 Feb 25.

本文引用的文献

1
On the Challenges Associated with Obtaining Reproducible Measurements Using SWEI in the Median Nerve.
Ultrasound Med Biol. 2020 May;46(5):1092-1104. doi: 10.1016/j.ultrasmedbio.2019.12.023. Epub 2020 Feb 11.
2
Two-Point Frequency Shift Method for Shear Wave Attenuation Measurement.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Mar;67(3):483-496. doi: 10.1109/TUFFC.2019.2945620. Epub 2019 Oct 4.
3
Directivity and Frequency-Dependent Effective Sensitive Element Size of Membrane Hydrophones: Theory Versus Experiment.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Nov;66(11):1723-1730. doi: 10.1109/TUFFC.2019.2930042. Epub 2019 Jul 24.
4
Correction for Spatial Averaging Artifacts in Hydrophone Measurements of High-Intensity Therapeutic Ultrasound: An Inverse Filter Approach.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Sep;66(9):1453-1464. doi: 10.1109/TUFFC.2019.2924351. Epub 2019 Jun 24.
6
Considerations for Choosing Sensitive Element Size for Needle and Fiber-Optic Hydrophones-Part II: Experimental Validation of Spatial Averaging Model.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Feb;66(2):340-347. doi: 10.1109/TUFFC.2018.2886071. Epub 2018 Dec 10.
7
Considerations for Choosing Sensitive Element Size for Needle and Fiber-Optic Hydrophones-Part I: Spatiotemporal Transfer Function and Graphical Guide.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Feb;66(2):318-339. doi: 10.1109/TUFFC.2018.2886067. Epub 2018 Dec 10.
8
Directivity and Frequency-Dependent Effective Sensitive Element Size of a Reflectance-Based Fiber-Optic Hydrophone: Predictions From Theoretical Models Compared With Measurements.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Dec;65(12):2343-2348. doi: 10.1109/TUFFC.2018.2872840. Epub 2018 Oct 1.
9
Directivity and Frequency-Dependent Effective Sensitive Element Size of Needle Hydrophones: Predictions From Four Theoretical Forms Compared With Measurements.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Oct;65(10):1781-1788. doi: 10.1109/TUFFC.2018.2855967. Epub 2018 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验