IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Mar;68(3):358-375. doi: 10.1109/TUFFC.2020.3037946. Epub 2021 Feb 25.
This article reports underestimation of mechanical index (MI) and nonscanned thermal index for bone near focus (TIB) due to hydrophone spatial averaging effects that occur during acoustic output measurements for clinical linear and phased arrays. TIB is the appropriate version of thermal index (TI) for fetal imaging after ten weeks from the last menstrual period according to the American Institute of Ultrasound in Medicine (AIUM). Spatial averaging is particularly troublesome for highly focused beams and nonlinear, nonscanned modes such as acoustic radiation force impulse (ARFI) and pulsed Doppler. MI and variants of TI (e.g., TIB), which are displayed in real-time during imaging, are often not corrected for hydrophone spatial averaging because a standardized method for doing so does not exist for linear and phased arrays. A novel analytic inverse-filter method to correct for spatial averaging for pressure waves from linear and phased arrays is derived in this article (Part I) and experimentally validated in a companion article (Part II). A simulation was developed to estimate potential spatial-averaging errors for typical clinical ultrasound imaging systems based on the theoretical inverse filter and specifications for 124 scanner/transducer combinations from the U.S. Food and Drug Administration (FDA) 510(k) database from 2015 to 2019. Specifications included center frequency, aperture size, acoustic output parameters, hydrophone geometrical sensitive element diameter, etc. Correction for hydrophone spatial averaging using the inverse filter suggests that maximally achievable values for MI, TIB, thermal dose ( t ), and spatial-peak-temporal-average intensity ( [Formula: see text]) for typical clinical systems are potentially higher than uncorrected values by (means ± standard deviations) 9% ± 4% (ARFI MI), 19% ± 15% (ARFI TIB), 50% ± 41% (ARFI t ), 43% ± 39% (ARFI [Formula: see text]), 7% ± 5% (pulsed Doppler MI), 15% ± 11% (pulsed Doppler TIB), 42% ± 31% (pulsed Doppler t ), and 33% ± 27% (pulsed Doppler [Formula: see text]). These values correspond to frequencies of 3.2 ± 1.3 (ARFI) and 4.1 ± 1.4 MHz (pulsed Doppler), and the model predicts that they would increase with frequency. Inverse filtering for hydrophone spatial averaging significantly improves the accuracy of estimates of MI, TIB, t , and [Formula: see text] for ARFI and pulsed Doppler signals.
这篇文章报道了在临床线性和相控阵的声学输出测量期间,由于水听器空间平均效应,会低估机械指数 (MI) 和非扫描骨近场热指数 (TIB)。根据美国超声医学研究所 (AIUM) 的规定,TIB 是末次月经后 10 周胎儿成像的适当版本的热指数 (TI)。空间平均对于高聚焦波束和非线性、非扫描模式(如声辐射力脉冲 (ARFI) 和脉冲多普勒)特别麻烦。MI 和 TI 的变体(例如,TIB)在成像过程中实时显示,但通常不针对水听器空间平均进行校正,因为线性和相控阵没有标准化的校正方法。本文(第一部分)推导了一种用于校正线性和相控阵压力波空间平均的新的解析逆滤波方法,并在一篇配套文章(第二部分)中进行了实验验证。开发了一个模拟来根据理论逆滤波器和 2015 年至 2019 年美国食品和药物管理局 (FDA) 510(k) 数据库中 124 个扫描仪/换能器组合的规格,估计典型临床超声成像系统的潜在空间平均误差。规格包括中心频率、孔径尺寸、声输出参数、水听器几何敏感元件直径等。使用逆滤波器校正水听器空间平均表明,对于典型的临床系统,MI、TIB、热剂量 ( t ) 和空间峰值时间平均强度 ([Formula: see text]) 的最大可实现值可能比未校正值高 (平均值 ± 标准偏差) 9% ± 4% (ARFI MI)、19% ± 15% (ARFI TIB)、50% ± 41% (ARFI t )、43% ± 39% (ARFI [Formula: see text])、7% ± 5% (脉冲多普勒 MI)、15% ± 11% (脉冲多普勒 TIB)、42% ± 31% (脉冲多普勒 t )和 33% ± 27% (脉冲多普勒 [Formula: see text])。这些值对应于 3.2 ± 1.3 (ARFI) 和 4.1 ± 1.4 MHz (脉冲多普勒) 的频率,并且该模型预测它们会随着频率增加而增加。水听器空间平均的逆滤波显著提高了 ARFI 和脉冲多普勒信号的 MI、TIB、 t 和 [Formula: see text] 的估计精度。