Khan Ambreen Afsar, Akram Kaenat, Zaman Akbar, Anwar Bég O, Bég Tasveer Anwar
Department of Mathematics and Statistics, International Islamic University, Islamabad, Pakistan.
Informatics Complex, International Islamic University, Islamabad, Pakistan.
Proc Inst Mech Eng H. 2022 Aug;236(8):1080-1092. doi: 10.1177/09544119221105848. Epub 2022 Jun 23.
Emerging systems in microfluidics are embracing bio-inspired designs in which boundaries are flexible and mimic peristaltic propulsion mechanisms encountered in nature. These devices utilize electro-kinetic body forces to manipulate very precisely ionic biofluids for a range of medical applications including. Motivated by exploring in more detail electro-hemorheological micro-pumping, in the current article, a mathematical model is developed for peristalsis propulsion of a viscoelastic biofluid in a curved microchannel with electro-osmotic effect and thermal transport under static axial electrical field and with viscous heating. The third grade Reiner-Rivlin model is deployed for blood rheology. The novelty of the current work is therefore the . A Poisson-Boltzmann formulation is adopted to simulate the charge number density associated with the electrical potential. Asymmetric zeta potential (25 mV) is prescribed and mobilizes an electric double layer (EDL). The governing conservation equations for mass, energy, momentum and electrical potential with associated boundary conditions are simplified using lubrication approximations and rendered dimensionless via appropriate scaling transformations. Analytical solutions are derived in the form of Bessel functions and numerical evaluations are conducted via the ND solver command in MATHEMATICA symbolic software. The simulations show that with stronger viscoelastic effect, boluses are eliminated and there is relaxation in streamlines in the core and peripheral regions of the micro-channel. Increasing Brinkman number (dissipation parameter) elevates temperatures. An increase in electrical double layer thickness initially produces a contraction in the upper bolus and an expansion (lateral) in the lower bolus in the micro-channel. With modification in zeta potential ratio parameter from positive to negative values, in the lower half of the micro-channel, axial flow deceleration is generated.
微流控领域中新兴的系统正采用受生物启发的设计,其中边界是灵活的,模仿了自然界中遇到的蠕动推进机制。这些设备利用电动体力非常精确地操纵离子生物流体,以用于一系列医学应用,包括……受更详细地探索电流变微泵的启发,在本文中,建立了一个数学模型,用于研究在静态轴向电场和粘性加热条件下,具有电渗效应和热传递的弯曲微通道中粘弹性生物流体的蠕动推进。采用三阶Reiner-Rivlin模型来描述血液流变学。因此,当前工作的新颖之处在于……采用泊松-玻尔兹曼公式来模拟与电势相关的电荷数密度。规定了不对称的zeta电位(25 mV)并激发了一个电双层(EDL)。利用润滑近似简化了质量、能量、动量和电势的控制守恒方程及其相关边界条件,并通过适当的尺度变换使其无量纲化。以贝塞尔函数的形式导出了解析解,并通过MATHEMATICA符号软件中的ND求解器命令进行了数值评估。模拟结果表明,随着粘弹性效应增强,团块被消除,微通道核心和外围区域的流线出现松弛。增加布林克曼数(耗散参数)会提高温度。电双层厚度的增加最初会使微通道中上部团块收缩,下部团块膨胀(横向)。随着zeta电位比参数从正值变为负值,在微通道的下半部分会产生轴向流动减速。