Suppr超能文献

一个地理信息系统模型,用于在西班牙北部的区域尺度上分析社会经济背景下的 COVID-19 问题区域。

A geographical information system model to define COVID-19 problem areas with an analysis in the socio-economic context at the regional scale in the North of Spain.

机构信息

Department of Geography, Urban and Regional Planning, Universidad de Cantabria; Research Group on Health Economics and Health Services Management - Marques de Valdecilla Research Institute (IDIVAL), Santander.

Research Group on Health Economics and Health Services Management - Marques de Valdecilla Research Institute (IDIVAL); Department of Economics, Universidad de Cantabria, Santander.

出版信息

Geospat Health. 2022 Mar 18;17(s1). doi: 10.4081/gh.2022.1067.

Abstract

The work presented concerns the spatial behaviour of coronavirus disease 2019 (COVID-19) at the regional scale and the socio-economic context of problem areas over the 2020-2021 period. We propose a replicable geographical information systems (GIS) methodology based on geocodification and analysis of COVID-19 microdata registered by health authorities of the Government of Cantabria, Spain from the beginning of the pandemic register (29th February 2020) to 2nd December 2021. The spatial behaviour of the virus was studied using ArcGIS Pro and a 1x1 km vector grid as the homogeneous reference layer. The GIS analysis of 45,392 geocoded cases revealed a clear process of spatial contraction of the virus after the spread in 2020 with 432 km2 of problem areas reduced to 126.72 km2 in 2021. The socio-economic framework showed complex relationships between COVID-19 cases and the explanatory variables related to household characteristics, socio-economic conditions and demographic structure. Local bivariate analysis showed fuzzier results in persistent hotspots in urban and peri-urban areas. Questions about ‘where, when and how’ contribute to learning from experience as we must draw inspiration from, and explore connections to, those confronting the issues related to the current pandemic.

摘要

本研究关注的是 2020 年至 2021 年间,2019 年冠状病毒病(COVID-19)在区域尺度上的空间行为,以及问题区域的社会经济背景。我们提出了一种可复制的地理信息系统(GIS)方法,该方法基于地理编码和对西班牙坎塔布里亚政府卫生当局从大流行登记开始(2020 年 2 月 29 日)到 2021 年 12 月 2 日登记的 COVID-19 微观数据的分析。使用 ArcGIS Pro 和 1x1km 的矢量网格作为均匀参考层来研究病毒的空间行为。对 45392 个地理编码病例的 GIS 分析显示,病毒在 2020 年传播后,呈现出明显的空间收缩过程,2020 年有 432 平方公里的问题区域减少到 2021 年的 126.72 平方公里。社会经济框架显示,COVID-19 病例与与家庭特征、社会经济条件和人口结构相关的解释变量之间存在复杂的关系。局部二元分析显示,城市和城郊地区的持续热点存在更模糊的结果。关于“何处、何时以及如何”的问题有助于从经验中学习,因为我们必须从中汲取灵感,并探索与当前大流行相关问题的联系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验