Suppr超能文献

代谢组学与机器学习相结合可鉴定出新的孢囊线虫孵化因子。

A Combination of Metabolomics and Machine Learning Results in the Identification of a New Cyst Nematode Hatching Factor.

作者信息

Vlaar Lieke E, Thiombiano Benjamin, Abedini Davar, Schilder Mario, Yang Yuting, Dong Lemeng

机构信息

Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.

出版信息

Metabolites. 2022 Jun 16;12(6):551. doi: 10.3390/metabo12060551.

Abstract

Potato Cyst Nematodes (PCNs) are an economically important pest for potato growers. A crucial event in the life cycle of the nematode is hatching, after which the juvenile will move toward the host root and infect it. The hatching of PCNs is induced by known and unknown compounds in the root exudates of host plant species, called hatching factors (HFs, induce hatching independently), such as solanoeclepin A (solA), or hatching stimulants (HSs, enhance hatching activity of HFs). Unraveling the identity of unknown HSs and HFs and their natural variation is important for the selection of cultivars that produce low amounts of HFs and HSs, thus contributing to more sustainable agriculture. In this study, we used a new approach aimed at the identification of new HFs and HSs for PCNs in potato. Hereto, root exudates of a series of different potato cultivars were analyzed for their PCN hatch-inducing activity and their solA content. The exudates were also analyzed using untargeted metabolomics, and subsequently the data were integrated using machine learning, specifically random forest feature selection, and Pearson's correlation testing. As expected, solA highly correlates with hatching. Furthermore, this resulted in the discovery of a number of metabolite features present in the root exudate that correlate with hatching and solA content, and one of these is a compound of / 526.18 that predicts hatching even better than solA with both data methods. This compound's involvement in hatch stimulation was confirmed by the fractionation of three representative root exudates and hatching assays with the resulting fractions. Moreover, the compound shares mass fragmentation similarity with solA, and we therefore assume it has a similar structure. With this work, we show that potato likely produces a solA analogue, and we contribute to unraveling the hatch-inducing cocktail exuded by plant roots.

摘要

马铃薯胞囊线虫(PCNs)对马铃薯种植者来说是一种具有重要经济影响的害虫。线虫生命周期中的一个关键事件是孵化,孵化后幼虫会向寄主根系移动并进行侵染。PCNs的孵化由寄主植物根系分泌物中的已知和未知化合物诱导,这些化合物被称为孵化因子(HFs,独立诱导孵化),如茄尼醇A(solA),或孵化刺激物(HSs,增强HFs的孵化活性)。揭示未知HSs和HFs的身份及其自然变异对于选择产生少量HFs和HSs的品种很重要,从而有助于实现更可持续的农业。在本研究中,我们采用了一种新方法来鉴定马铃薯中PCNs的新HFs和HSs。为此,分析了一系列不同马铃薯品种的根系分泌物对PCNs的孵化诱导活性及其solA含量。还使用非靶向代谢组学对分泌物进行了分析,随后使用机器学习,特别是随机森林特征选择和皮尔逊相关性测试对数据进行整合。正如预期的那样,solA与孵化高度相关。此外,这导致发现了根系分泌物中一些与孵化和solA含量相关的代谢物特征,其中之一是一种质荷比为526.18的化合物,在两种数据方法中,它对孵化的预测甚至比solA更好。通过对三种代表性根系分泌物进行分级分离并用所得级分进行孵化试验,证实了该化合物在孵化刺激中的作用。此外,该化合物与solA具有相似的质谱裂解模式,因此我们假设它具有相似的结构。通过这项工作,我们表明马铃薯可能产生一种solA类似物,并且我们有助于揭示植物根系分泌的孵化诱导混合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fd5/9229034/5c234984e5fc/metabolites-12-00551-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验