Suppr超能文献

基于索引感知自动编码器的医疗保健数据非线性缺失数据插补。

Non-linear missing data imputation for healthcare data via index-aware autoencoders.

机构信息

Department of Industrial and Management Systems Engineering, West Virginia University, 401 Evansdale Dr, Morgantown, WV, 26505, USA.

Department of Systems and Operations Management, California State University Northridge, 18111 Nordhoff St, Northridge, CA, 91330, USA.

出版信息

Health Care Manag Sci. 2022 Sep;25(3):484-497. doi: 10.1007/s10729-022-09597-1. Epub 2022 Jun 23.

Abstract

The availability of data in the healthcare domain provides great opportunities for the discovery of new or hidden patterns in medical data, which can eventually lead to improved clinical decision making. Predictive models play a crucial role in extracting this unknown information from data. However, medical data often contain missing values that can degrade the performance of predictive models. Autoencoder models have been widely used as non-linear functions for the imputation of missing data in fields such as computer vision, transportation, and finance. In this study, we assess the shortcomings of autoencoder models for data imputation and propose modified models to improve imputation performance. To evaluate, we compare the performance of the proposed model with five well-known imputation techniques on six medical datasets and five classification methods. Through extensive experiments, we demonstrate that the proposed non-linear imputation model outperforms the other models for all degrees of missing ratios and leads to the highest disease classification accuracy for all datasets.

摘要

医疗领域数据的可用性为发现医学数据中的新或隐藏模式提供了巨大的机会,这最终可以导致改善临床决策。预测模型在从数据中提取这些未知信息方面起着至关重要的作用。然而,医疗数据通常包含缺失值,这会降低预测模型的性能。自动编码器模型已被广泛用作计算机视觉、交通和金融等领域缺失数据插补的非线性函数。在这项研究中,我们评估了自动编码器模型在数据插补方面的缺点,并提出了改进模型以提高插补性能。为了进行评估,我们将所提出的模型的性能与五种著名的插补技术在六个医疗数据集和五种分类方法上进行了比较。通过广泛的实验,我们证明所提出的非线性插补模型在所有缺失率下都优于其他模型,并为所有数据集带来了最高的疾病分类准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验