Informatics Institute, Computational Science and Engineering, Istanbul Technical University, TR-34469 Istanbul, Turkey.
Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France.
Biochemistry. 2022 Jul 5;61(13):1286-1297. doi: 10.1021/acs.biochem.2c00158. Epub 2022 Jun 23.
Peptidylarginine deiminase 2 (PAD2) is a Ca-dependent enzyme that catalyzes the conversion of protein arginine residues to citrulline. This kind of structural modification in histone molecules may affect gene regulation, leading to effects that may trigger several diseases, including breast cancer, which makes PAD2 an attractive target for anticancer drug development. To design new effective inhibitors to control activation of PAD2, improving our understanding of the molecular mechanisms of PAD2 using up-to-date computational techniques is essential. We have designed five different PAD2-substrate complex systems based on varying protonation states of the active site residues. To search the conformational space broadly, multiple independent molecular dynamics simulations of the complexes have been performed. In total, 50 replica simulations have been performed, each of 1 μs, yielding a total simulation time of 50 μs. Our findings identify that the protonation states of Cys647, Asp473, and His471 are critical for the binding and localization of the -α-benzoyl-l-arginine ethyl ester substrate within the active site. A novel mechanism for enzyme activation is proposed according to near attack conformers. This represents an important step in understanding the mechanism of citrullination and developing PAD2-inhibiting drugs for the treatment of breast cancer.
肽基精氨酸脱亚氨酶 2(PAD2)是一种 Ca2+依赖性酶,可催化蛋白质精氨酸残基转化为瓜氨酸。这种组蛋白分子的结构修饰可能会影响基因调控,从而引发多种疾病,包括乳腺癌,这使得 PAD2 成为抗癌药物开发的有吸引力的靶标。为了设计新的有效抑制剂来控制 PAD2 的激活,使用最新的计算技术来提高我们对 PAD2 分子机制的理解至关重要。我们基于活性位点残基的不同质子化状态设计了五个不同的 PAD2-底物复合体系。为了广泛搜索构象空间,对复合物进行了多次独立的分子动力学模拟。总共进行了 50 个副本模拟,每个模拟 1 μs,总模拟时间为 50 μs。我们的研究结果表明,Cys647、Asp473 和 His471 的质子化状态对于 -α-苯甲酰基-L-精氨酸乙酯底物在活性位点内的结合和定位至关重要。根据接近攻击构象,提出了一种酶激活的新机制。这是理解瓜氨酸化机制和开发用于治疗乳腺癌的 PAD2 抑制药物的重要一步。