Suppr超能文献

基于区间优势的区间值有序数据特征选择

Interval Dominance-Based Feature Selection for Interval-Valued Ordered Data.

作者信息

Li Wentao, Zhou Haoxiang, Xu Weihua, Wang Xi-Zhao, Pedrycz Witold

出版信息

IEEE Trans Neural Netw Learn Syst. 2023 Oct;34(10):6898-6912. doi: 10.1109/TNNLS.2022.3184120. Epub 2023 Oct 5.

Abstract

Dominance-based rough approximation discovers inconsistencies from ordered criteria and satisfies the requirement of the dominance principle between single-valued domains of condition attributes and decision classes. When the ordered decision system (ODS) is no longer single-valued, how to utilize the dominance principle to deal with multivalued ordered data is a promising research direction, and it is the most challenging step to design a feature selection algorithm in interval-valued ODS (IV-ODS). In this article, we first present novel thresholds of interval dominance degree (IDD) and interval overlap degree (IOD) between interval values to make the dominance principle applicable to an IV-ODS, and then, the interval-valued dominance relation in the IV-ODS is constructed by utilizing the above two developed parameters. Based on the proposed interval-valued dominance relation, the interval-valued dominance-based rough set approach (IV-DRSA) and their corresponding properties are investigated. Moreover, the interval dominance-based feature selection rules based on IV-DRSA are provided, and the relevant algorithms for deriving the interval-valued dominance relation and the feature selection methods are established in IV-ODS. To illustrate the effectiveness of the parameters variation on feature selection rules, experimental evaluation is performed using 12 datasets coming from the University of California-Irvine (UCI) repository.

摘要

基于优势的粗糙近似从有序准则中发现不一致性,并满足条件属性单值域与决策类之间的优势原则要求。当有序决策系统(ODS)不再是单值时,如何利用优势原则处理多值有序数据是一个有前景的研究方向,而在区间值ODS(IV-ODS)中设计特征选择算法是最具挑战性的一步。在本文中,我们首先提出区间值之间的区间优势度(IDD)和区间重叠度(IOD)的新阈值,以使优势原则适用于IV-ODS,然后利用上述两个新参数构建IV-ODS中的区间值优势关系。基于所提出的区间值优势关系,研究了基于区间值优势的粗糙集方法(IV-DRSA)及其相应性质。此外,给出了基于IV-DRSA的区间优势特征选择规则,并在IV-ODS中建立了推导区间值优势关系的相关算法和特征选择方法。为了说明参数变化对特征选择规则的有效性,使用来自加州大学欧文分校(UCI)存储库的12个数据集进行了实验评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验