Suppr超能文献

基于改进电子鼻的决策规则构建算法

Improved EAV-Based Algorithm for Decision Rules Construction.

作者信息

Żabiński Krzysztof, Zielosko Beata

机构信息

Institute of Computer Science, Faculty of Science and Technology, University of Silesia in Katowice, Będzińska 39, 41-200 Sosnowiec, Poland.

出版信息

Entropy (Basel). 2023 Jan 2;25(1):91. doi: 10.3390/e25010091.

Abstract

In this article, we present a modification of the algorithm based on EAV (entity-attribute-value) model, for induction of decision rules, utilizing novel approach for attribute ranking. The selection of attributes used as premises of decision rules, is an important stage of the process of rules induction. In the presented approach, this task is realized using ranking of attributes based on standard deviation of attributes' values per decision classes, which is considered as a distinguishability level. The presented approach allows to work not only with numerical values of attributes but also with categorical ones. For this purpose, an additional step of data transformation into a matrix format has been proposed. It allows to transform data table into a binary one with proper equivalents of categorical values of attributes and ensures independence of the influence of the attribute selection function from the data type of variables. The motivation for the proposed method is the development of an algorithm which allows to construct rules close to optimal ones in terms of length, while maintaining enough good classification quality. The experiments presented in the paper have been performed on data sets from UCI ML Repository, comparing results of the proposed approach with three selected greedy heuristics for induction of decision rules, taking into consideration classification accuracy and length and support of constructed rules. The obtained results show that for the most part of datasests, the average length of rules obtained for 80% of best attributes from the ranking is very close to values obtained for the whole set of attributes. In case of classification accuracy, for 50% of considered datasets, results obtained for 80% of best attributes from the ranking are higher or the same as results obtained for the whole set of attributes.

摘要

在本文中,我们提出了一种基于EAV(实体-属性-值)模型的算法改进方法,用于决策规则的归纳,该方法采用了新颖的属性排序方法。用作决策规则前提的属性选择是规则归纳过程中的一个重要阶段。在本文提出的方法中,该任务通过基于每个决策类属性值的标准差对属性进行排序来实现,该标准差被视为区分度水平。所提出的方法不仅允许处理属性的数值,还允许处理分类值。为此,提出了将数据转换为矩阵格式的附加步骤。它允许将数据表转换为具有适当属性分类值等效项的二进制表,并确保属性选择函数的影响独立于变量的数据类型。所提出方法的动机是开发一种算法,该算法能够构建长度接近最优的规则,同时保持足够好的分类质量。本文中呈现的实验是在UCI机器学习库的数据集上进行的,将所提出方法的结果与三种选定的用于决策规则归纳的贪婪启发式方法进行比较,同时考虑分类准确性、规则长度和支持度。获得的结果表明,对于大多数数据集,从排序中80%的最佳属性获得的规则平均长度与从整个属性集获得的规则平均长度非常接近。在分类准确性方面,对于50%的考虑数据集,从排序中80%的最佳属性获得的结果高于或等于从整个属性集获得的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/481b/9858280/cb2c07f62ca5/entropy-25-00091-g001.jpg

相似文献

6
Feature selection based on neighborhood rough sets and Gini index.基于邻域粗糙集和基尼指数的特征选择
PeerJ Comput Sci. 2023 Dec 12;9:e1711. doi: 10.7717/peerj-cs.1711. eCollection 2023.
9
Interval Dominance-Based Feature Selection for Interval-Valued Ordered Data.基于区间优势的区间值有序数据特征选择
IEEE Trans Neural Netw Learn Syst. 2023 Oct;34(10):6898-6912. doi: 10.1109/TNNLS.2022.3184120. Epub 2023 Oct 5.
10
Adapted variable precision rough set approach for EEG analysis.适应变量精度粗糙集方法在 EEG 分析中的应用。
Artif Intell Med. 2009 Nov;47(3):239-61. doi: 10.1016/j.artmed.2009.07.004. Epub 2009 Sep 2.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验