Suppr超能文献

理解最大熵方法在建模和推理中的约束。

Understanding the Constraints in Maximum Entropy Methods for Modeling and Inference.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Mar;45(3):3994-3998. doi: 10.1109/TPAMI.2022.3185394. Epub 2023 Feb 3.

Abstract

The principle of maximum entropy, developed more than six decades ago, provides a systematic approach to modeling inference, and data analysis grounded in the principles of information theory, Bayesian probability and constrained optimization. Since its formulation, criticisms about the consistency of that method and the role of constraints have been raised. Among these, the chief criticism is that maximum entropy does not satisfy the principle of causation, or similarly, that maximum entropy updating is inconsistent due to an inadequate representation of causal information. We show that these criticisms rest on misunderstanding and misapplication of the way constraints have to be specified within the maximum entropy method. Correction of these problems eliminates the seeming paradoxes and inconsistencies critics claim to have detected. We demonstrate that properly formulated maximum entropy models satisfy the principle of causation.

摘要

六十多年前发展起来的最大熵原理为基于信息论、贝叶斯概率和约束优化原理的建模推理和数据分析提供了一种系统的方法。自提出以来,人们对该方法的一致性和约束的作用提出了批评。其中,主要的批评是最大熵原理不符合因果关系原则,或者同样地,由于对因果信息的表示不充分,最大熵更新是不一致的。我们表明,这些批评是基于对最大熵方法中约束的指定方式的误解和错误应用。纠正这些问题消除了批评者声称已经发现的悖论和不一致。我们证明了正确制定的最大熵模型满足因果关系原则。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验