Suppr超能文献

一种用于估计决策置信度的元学习脑机接口。

A meta-learning BCI for estimating decision confidence.

机构信息

Brain-Computer Interfaces and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom.

Department of Computer Science, University College of London, London, United Kingdom.

出版信息

J Neural Eng. 2022 Jul 11;19(4). doi: 10.1088/1741-2552/ac7ba8.

Abstract

We investigated whether a recently introduced transfer-learning technique based on meta-learning could improve the performance of brain-computer interfaces (BCIs) for decision-confidence prediction with respect to more traditional machine learning methods.We adapted the meta-learning by biased regularisation algorithm to the problem of predicting decision confidence from electroencephalography (EEG) and electro-oculogram (EOG) data on a decision-by-decision basis in a difficult target discrimination task based on video feeds. The method exploits previous participants' data to produce a prediction algorithm that is then quickly tuned to new participants. We compared it with with the traditional single-subject training almost universally adopted in BCIs, a state-of-the-art transfer learning technique called domain adversarial neural networks, a transfer-learning adaptation of a zero-training method we used recently for a similar task, and with a simple baseline algorithm.The meta-learning approach was significantly better than other approaches in most conditions, and much better in situations where limited data from a new participant are available for training/tuning. Meta-learning by biased regularisation allowed our BCI to seamlessly integrate information from past participants with data from a specific user to produce high-performance predictors. Its robustness in the presence of small training sets is a real-plus in BCI applications, as new users need to train the BCI for a much shorter period.Due to the variability and noise of EEG/EOG data, BCIs need to be normally trained with data from a specific participant. This work shows that even better performance can be obtained using our version of meta-learning by biased regularisation.

摘要

我们研究了一种最近引入的基于元学习的迁移学习技术是否可以提高脑机接口 (BCI) 对决策信心预测的性能,与更传统的机器学习方法相比。我们根据视频馈送的困难目标识别任务中基于决策的脑电图 (EEG) 和眼电图 (EOG) 数据,自适应元学习的有偏正则化算法来预测决策信心。该方法利用以前参与者的数据来生成预测算法,然后快速调整新参与者。我们将其与 BCI 中几乎普遍采用的传统单主体训练、称为域对抗神经网络的最新迁移学习技术、我们最近用于类似任务的零训练方法的迁移学习适应以及简单基线算法进行了比较。元学习方法在大多数情况下明显优于其他方法,在新参与者可用的有限数据用于训练/调整的情况下,效果更好。有偏正则化的元学习允许我们的 BCI 无缝地将过去参与者的信息与特定用户的数据结合起来,从而生成高性能的预测器。在存在小训练集的情况下,其稳健性是 BCI 应用的真正优势,因为新用户需要更短的时间来训练 BCI。由于 EEG/EOG 数据的可变性和噪声,BCI 需要使用特定参与者的数据进行正常训练。这项工作表明,使用我们的有偏正则化元学习版本可以获得更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验