Suppr超能文献

激光照射过程中组织内光学与热分布的建模。

Modeling optical and thermal distributions in tissue during laser irradiation.

作者信息

Jacques S L, Prahl S A

出版信息

Lasers Surg Med. 1987;6(6):494-503. doi: 10.1002/lsm.1900060604.

Abstract

The propagation of light energy in tissues is an important problem in phototherapy, especially with the increased use of lasers as light sources. Often a slight difference in delivered energy separates a useless, efficacious, or disastrous treatment. Methods are presented for experimental characterization of the optical properties of a tissue and computational prediction of the distribution of light energy within a tissue. A standard integrating sphere spectrophotometer measured the total transmission, Tt, total reflectance, Rt, and the on-axis transmission, Ta, for incident collimated light that propagated through the dermis of albino mouse skin, over the visible spectrum. The diffusion approximation solution to the one-dimensional (1-D) optical transport equation computed the expected Tt and Rt for different combinations of absorbance, k, scattering, s, and anisotropy, g, and by iterative comparison of the measured and computed Tt and Rt values converged to the intrinsic tissue parameters. For example, mouse dermis presented optical parameters of 2.8 cm-1, 239 cm-1, and 0.74 for k, s, and g, respectively, at 488 nm wavelength. These values were used in the model to simulate the optical propagation of the 488-nm line of an argon laser through mouse skin in vivo. A 1-D Green's function thermal diffusion model computed the temperature distribution within the tissue at different times during laser irradiation. In vitro experiments showed that the threshold temperature range for coagulation was 60 degrees-70 degrees C, and the kinetics were first order, with a temperature-dependent rate constant that obeyed an Arrhenius relation (molar entropy 276 cal/mol-degrees K, molar enthalpy 102 kcal/mol). The model simulation agreed with the corresponding in vivo experiment that a 2-s pulse at 55 W/cm2 irradiance will achieve coagulation of the skin.

摘要

光能在组织中的传播是光疗中的一个重要问题,尤其是随着激光作为光源的使用日益增加。通常,所传递能量的细微差异会导致治疗效果从无效、有效到灾难性的不同结果。本文介绍了用于组织光学特性实验表征以及组织内光能分布计算预测的方法。一台标准积分球分光光度计测量了在可见光谱范围内,准直入射光穿过白化病小鼠皮肤真皮层后的总透射率(Tt)、总反射率(Rt)以及轴上透射率(Ta)。一维(1-D)光学传输方程的扩散近似解计算了不同吸光度(k)、散射系数(s)和各向异性(g)组合下的预期(Tt)和(Rt),并通过测量值与计算值的迭代比较,收敛得到组织的固有参数。例如,在波长为488 nm时,小鼠真皮的光学参数(k)、(s)和(g)分别为(2.8 cm^{-1})、(239 cm^{-1})和(0.74)。这些值被用于模型中,以模拟氩激光488 nm谱线在小鼠活体皮肤中的光学传播。一个一维格林函数热扩散模型计算了激光照射过程中不同时刻组织内的温度分布。体外实验表明,凝固的阈值温度范围为60℃ - 70℃,动力学为一级反应,其速率常数与温度相关,服从阿伦尼乌斯关系(摩尔熵为276 cal/mol - K,摩尔焓为102 kcal/mol)。模型模拟结果与相应的体内实验结果一致,即辐照度为(55 W/cm^{2})的2秒脉冲将使皮肤发生凝固。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验