College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
J Hazard Mater. 2022 Aug 15;436:129183. doi: 10.1016/j.jhazmat.2022.129183. Epub 2022 May 21.
In this work, sulfur/nitrogen modified reduced graphene oxide (S/N-rGO) was employed as both electron shuttle and support to fabricate Fe-Mn bimetallic organic framework@S/N-rGO hybrids (BOF@S/N-rGO) via a facile two-step solvothermal route. Compared with the transition metal ions (Fe/Mn), the classical metal oxide catalyst (FeO and FeO) and nano zero-valent iron (nZVI), BOF@S/N-rGO catalyst can more effectively activate peroxydisulfate (PDS) with ultra-low concentration (0.05 mM) to degrade sulfamethazine (SMT). Quenching experiments, electron paramagnetic resonance (EPR) measurement and linear sweep voltammetry (LSV) showed that the activation pathways of PDS between the two catalysts were different. In BOF@N-rGO+PDS system, the degradation of SMT was mainly attributed to the oxidation of radicals including SO and •OH, especially SO•- . However, in BOF@S-rGO+PDS system, in addition to the radical pathway, there are also non-radical pathways, namely O and direct electron transfer. Furthermore, the applicability of BOF@S/N-rGO used in the PDS-mediated advanced oxidation processes (AOPs) was systematically investigated in terms of the effects of operating parameters and coexisting substance (anions and humic acid (HA)), the degradation of other pollutants, as well as the stability and reusability of the catalyst. This study proved that BOF@S/N-rGO was a promising activator of PDS with ultra-low concentration for the degradation of SMT.
在这项工作中,硫/氮修饰的还原氧化石墨烯(S/N-rGO)被用作电子穿梭体和载体,通过简便的两步溶剂热法制备了 Fe-Mn 双金属有机骨架@S/N-rGO 杂化物(BOF@S/N-rGO)。与过渡金属离子(Fe/Mn)、经典金属氧化物催化剂(FeO 和 FeO)和纳米零价铁(nZVI)相比,BOF@S/N-rGO 催化剂可以更有效地激活过一硫酸盐(PDS),其浓度超低(0.05 mM),从而有效降解磺胺甲恶唑(SMT)。猝灭实验、电子顺磁共振(EPR)测量和线性扫描伏安法(LSV)表明,两种催化剂之间 PDS 的活化途径不同。在 BOF@N-rGO+PDS 体系中,SMT 的降解主要归因于包括 SO 和 •OH 在内的自由基的氧化,特别是 SO•-。然而,在 BOF@S-rGO+PDS 体系中,除了自由基途径外,还有非自由基途径,即 O 和直接电子转移。此外,还从操作参数和共存物质(阴离子和腐殖酸(HA))、其他污染物的降解、催化剂的稳定性和可重复使用性等方面系统研究了 BOF@S/N-rGO 在过一硫酸盐介导的高级氧化过程(AOPs)中的适用性。该研究证明了 BOF@S/N-rGO 是一种很有前途的超低浓度过一硫酸盐活化剂,可用于降解磺胺甲恶唑。