Suppr超能文献

过硫酸盐介导的 Fe&连二亚硫酸钠加速磺胺甲恶唑的降解与解毒:实验与密度泛函理论计算。

Accelerate sulfamethoxazole degradation and detoxification by persulfate mediated with Fe&dithionite: Experiments and DFT calculation.

机构信息

School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China.

School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.

出版信息

J Hazard Mater. 2022 Aug 15;436:129254. doi: 10.1016/j.jhazmat.2022.129254. Epub 2022 Jun 1.

Abstract

Advanced oxidation process (AOPs) is one of the most effective technologies for organic pollutants removal. In this study, diverse reactive species generation and enhanced sulfamethoxazole (SMX) degradation were investigated based on persulfate (PDS) activated by Fe&dithionite (DTN). When involving Fe&dithionite in PDS, SMX degradation efficiency reached 84 % within 30 min following a pseudo-first-order kinetic, which was higher than those in Fe/PDS (50.4 %) and Fe/O/DTN (41.3 %). SO and OH were identified as dominant reactive species with a crucial role of FeSO based on quenching experiment and electron spin resonance (ESR). The contributions of SO, OH, and other species to SMX degradation were 60.1 %, 33.9 %, and 6 %, respectively. In Fe/DTN/PDS system, SMX was effectively degraded under nearly neutral pH (5.0-9.0), with activation energy of 96.04 kJ·mol. The experiments and density functional theory (DFT) calculation demonstrated that three functional groups (benzenesulfonamido, benzene ring, and oxazole ring) were attacked for SMX degradation. Moreover, acute toxicity to Vibrio fischeri has enhanced in the earlier degradation process due to the intermediates and weaken with the continuous reaction. This work not only provides a high-activity SO-AOP for refractory pollutant treatment with possible dual radical generation resources, but elucidated diverse reactive species formation with Fe&dithionite.

摘要

高级氧化工艺(AOPs)是去除有机污染物最有效的技术之一。本研究基于过硫酸盐(PDS)与连二亚硫酸盐(DTN)联合活化,探讨了多种活性物质的生成和增强的磺胺甲恶唑(SMX)降解。当涉及到 Fe&dithionite 与 PDS 相互作用时,SMX 在 30 分钟内的降解效率达到了 84%,遵循准一级动力学,高于 Fe/PDS(50.4%)和 Fe/O/DTN(41.3%)。通过猝灭实验和电子顺磁共振(ESR)证实,SO 和 OH 是主要的活性物质,FeSO 在其中起着至关重要的作用。SO、OH 和其他物质对 SMX 降解的贡献分别为 60.1%、33.9%和 6%。在 Fe/DTN/PDS 体系中,SMX 可在近中性 pH(5.0-9.0)条件下有效降解,其活化能为 96.04 kJ·mol。实验和密度泛函理论(DFT)计算表明,SMX 的降解涉及三个官能团(苯磺酰胺基、苯环和恶唑环)的攻击。此外,由于中间产物的存在,在早期降解过程中对发光菌(Vibrio fischeri)的急性毒性增强,随着反应的持续进行而减弱。本研究不仅为处理难降解污染物提供了一种高效的 SO-AOP,且可能具有双重自由基生成资源,还阐明了 Fe&dithionite 生成多种活性物质的机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验