Shen Shin-Hsueh, Singh Shailendra P, Raffaele Marco, Waldman Maayan, Hochhauser Edith, Ospino Juancarlos, Arad Michael, Peterson Stephen J
Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA.
Department and Institute of Pharmacology, National Defense Medical Center, Taipei 11490, Taiwan.
Antioxidants (Basel). 2022 Jun 10;11(6):1147. doi: 10.3390/antiox11061147.
Recent studies suggest that PGC1-α plays a crucial role in mitochondrial and vascular function, yet the physiological significance of PGC1α and HO expression in adipose tissues in the context of obesity-linked vascular dysfunction remains unclear. We studied three groups of six-week-old C57BL/6J male mice: (1) mice fed a normal chow diet; (2) mice fed a high-fat diet (H.F.D.) for 28 weeks, and (3) mice fed a high-fat diet (H.F.D.) for 28 weeks, treated with adipose-specific overexpression of PGC-1α (transgenic-adipocyte-PGC-1α) at week 20, and continued on H.F.D. for weeks 20-28. R.N.A. arrays examined 88 genes involved in adipocyte proliferation and maturation. Blood pressure, tissue fibrosis, fasting glucose, and oxygen consumption were measured, as well as liver steatosis, and the expression levels of metabolic and mitochondrial markers. Obese mice exhibited a marked reduction of PGC1α and developed adipocyte hypertrophy, fibrosis, hepatic steatosis, and decreased mitochondrial respiration. Mice with adipose-specific overexpression of PGC1-α exhibited improvement in HO-1, mitochondrial biogenesis and respiration, with a decrease in fasting glucose, reduced blood pressure and fibrosis, and increased oxygen consumption. PGC-1α led to the upregulated expression of processes associated with the browning of fat tissue, including UCP1, FGF21, and pAMPK signaling, with a reduction in inflammatory adipokines, NOV/CCN3 expression, and TGFβ. These changes required HO-1 expression. The R.N.A. array analysis identified subgroups of genes positively correlated with contributions to the browning of adipose tissue, all dependent on HO-1. Our observations reveal a positive impact of adipose-PGC1-α on distal organ systems, with beneficial effects on HO-1 levels, reversing obesity-linked cardiometabolic disturbances.
最近的研究表明,PGC1-α在线粒体和血管功能中起着关键作用,然而,在肥胖相关血管功能障碍的背景下,PGC1α和HO在脂肪组织中的生理意义仍不清楚。我们研究了三组六周龄的C57BL/6J雄性小鼠:(1)喂食正常饲料的小鼠;(2)喂食高脂饮食(H.F.D.)28周的小鼠,以及(3)喂食高脂饮食(H.F.D.)28周的小鼠,在第20周进行脂肪特异性过表达PGC-1α(转基因脂肪细胞-PGC-1α)处理,并在第20-28周继续喂食高脂饮食。RNA阵列检测了88个参与脂肪细胞增殖和成熟的基因。测量了血压、组织纤维化、空腹血糖和耗氧量,以及肝脂肪变性,以及代谢和线粒体标志物的表达水平。肥胖小鼠表现出PGC1α明显降低,并出现脂肪细胞肥大、纤维化、肝脂肪变性和线粒体呼吸减少。脂肪特异性过表达PGC1-α的小鼠在HO-1、线粒体生物发生和呼吸方面表现出改善,空腹血糖降低、血压和纤维化降低,耗氧量增加。PGC-1α导致与脂肪组织褐变相关的过程的表达上调,包括UCP1、FGF21和pAMPK信号传导,同时炎症脂肪因子、NOV/CCN3表达和TGFβ减少。这些变化需要HO-1表达。RNA阵列分析确定了与脂肪组织褐变贡献呈正相关的基因亚组,所有这些都依赖于HO-1。我们的观察结果揭示了脂肪PGC1-α对远端器官系统的积极影响,对HO-1水平有有益影响,逆转了肥胖相关的心脏代谢紊乱。