Institute for Molecular Physiology, Heinrich Heine University, 40225 Düsseldorf, Germany.
Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
Biomolecules. 2022 Jun 4;12(6):787. doi: 10.3390/biom12060787.
Interactions between physical forces and membrane proteins underpin many forms of environmental sensation and acclimation. Microbes survive osmotic stresses with the help of mechanically gated ion channels and osmolyte transporters. Plant mechanosensitive ion channels have been shown to function in defense signaling. Here, we engineered genetically encoded osmolality sensors (OzTracs) by fusing fluorescent protein spectral variants to the mechanosensitive ion channels MscL from or MSL10 from . When expressed in yeast cells, the OzTrac sensors reported osmolality changes as a proportional change in the emission ratio of the two fluorescent protein domains. Live-cell imaging revealed an accumulation of fluorescent sensors in internal aggregates, presumably derived from the endomembrane system. Thus, OzTrac sensors serve as osmolality-dependent reporters through an indirect mechanism, such as effects on molecular crowding or fluorophore solvation.
物理力与膜蛋白之间的相互作用是许多形式的环境感知和适应的基础。微生物在机械门控离子通道和渗透物转运蛋白的帮助下,在渗透压应激下存活。已经表明植物机械敏感离子通道在防御信号转导中发挥作用。在这里,我们通过将荧光蛋白光谱变体融合到来自或来自的机械敏感离子通道 MscL 或 MSL10 中,构建了遗传编码的渗透压传感器 (OzTracs)。当在酵母细胞中表达时,OzTrac 传感器报告渗透压变化,其荧光蛋白结构域的发射比呈比例变化。活细胞成像显示荧光传感器在内部聚集体中积累,推测源自内质网系统。因此,OzTrac 传感器通过间接机制(例如对分子拥挤或荧光团溶剂化的影响)作为渗透压依赖性报告器。