一种用于脑肿瘤分类的混合深度学习模型。
A Hybrid Deep Learning Model for Brain Tumour Classification.
作者信息
Rasool Mohammed, Ismail Nor Azman, Boulila Wadii, Ammar Adel, Samma Hussein, Yafooz Wael M S, Emara Abdel-Hamid M
机构信息
School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru 81310, Malaysia.
Robotics and Internet-of-Things Laboratory, Prince Sultan University, Riyadh 12435, Saudi Arabia.
出版信息
Entropy (Basel). 2022 Jun 8;24(6):799. doi: 10.3390/e24060799.
A brain tumour is one of the major reasons for death in humans, and it is the tenth most common type of tumour that affects people of all ages. However, if detected early, it is one of the most treatable types of tumours. Brain tumours are classified using biopsy, which is not usually performed before definitive brain surgery. An image classification technique for tumour diseases is important for accelerating the treatment process and avoiding surgery and errors from manual diagnosis by radiologists. The advancement of technology and machine learning (ML) can assist radiologists in tumour diagnostics using magnetic resonance imaging (MRI) images without invasive procedures. This work introduced a new hybrid CNN-based architecture to classify three brain tumour types through MRI images. The method suggested in this paper uses hybrid deep learning classification based on CNN with two methods. The first method combines a pre-trained Google-Net model of the CNN algorithm for feature extraction with SVM for pattern classification. The second method integrates a finely tuned Google-Net with a soft-max classifier. The proposed approach was evaluated using MRI brain images that contain a total of 1426 glioma images, 708 meningioma images, 930 pituitary tumour images, and 396 normal brain images. The reported results showed that an accuracy of 93.1% was achieved from the finely tuned Google-Net model. However, the synergy of Google-Net as a feature extractor with an SVM classifier improved recognition accuracy to 98.1%.
脑肿瘤是人类死亡的主要原因之一,是影响各年龄段人群的第十大常见肿瘤类型。然而,如果早期发现,它是最可治疗的肿瘤类型之一。脑肿瘤通过活检进行分类,通常在确定性脑手术之前不进行活检。肿瘤疾病的图像分类技术对于加速治疗过程以及避免放射科医生手动诊断导致的手术和错误至关重要。技术和机器学习(ML)的进步可以帮助放射科医生使用磁共振成像(MRI)图像进行肿瘤诊断,而无需侵入性程序。这项工作引入了一种新的基于卷积神经网络(CNN)的混合架构,通过MRI图像对三种脑肿瘤类型进行分类。本文提出的方法使用基于CNN的混合深度学习分类,有两种方法。第一种方法将用于特征提取的CNN算法的预训练谷歌网络模型与用于模式分类的支持向量机(SVM)相结合。第二种方法将微调后的谷歌网络与soft-max分类器集成。使用包含总共1426张神经胶质瘤图像、708张脑膜瘤图像、930张垂体瘤图像和396张正常脑图像的MRI脑图像对所提出的方法进行了评估。报告结果表明,微调后的谷歌网络模型实现了93.1%的准确率。然而,谷歌网络作为特征提取器与SVM分类器的协同作用将识别准确率提高到了98.1%。