Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany.
German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany.
Int J Mol Sci. 2022 Jun 20;23(12):6873. doi: 10.3390/ijms23126873.
Alterations in mitochondrial function are an important control variable in the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), while also noted by increased de novo lipogenesis (DNL) and hepatic insulin resistance. We hypothesized that the organization and function of a mitochondrial electron transport chain (ETC) in this pathologic condition is a consequence of shifted substrate availability. We addressed this question using a transgenic mouse model with increased hepatic insulin resistance and DNL due to constitutively active human SREBP-1c. The abundance of ETC complex subunits and components of key metabolic pathways are regulated in the liver of these animals. Further omics approaches combined with functional assays in isolated liver mitochondria and primary hepatocytes revealed that the SREBP-1c-forced fatty liver induced a substrate limitation for oxidative phosphorylation, inducing enhanced complex II activity. The observed increased expression of mitochondrial genes may have indicated a counteraction. In conclusion, a shift of available substrates directed toward activated DNL results in increased electron flows, mainly through complex II, to compensate for the increased energy demand of the cell. The reorganization of key compounds in energy metabolism observed in the SREBP-1c animal model might explain the initial increase in mitochondrial function observed in the early stages of human MAFLD.
线粒体功能的改变是代谢功能障碍相关脂肪性肝病 (MAFLD) 进展的一个重要控制变量,同时也伴随着新的脂肪生成 (DNL) 和肝胰岛素抵抗的增加。我们假设在这种病理情况下,线粒体电子传递链 (ETC) 的组织和功能是底物可用性变化的结果。我们使用一种转基因小鼠模型来解决这个问题,该模型由于组成型激活的人 SREBP-1c 而导致肝胰岛素抵抗和 DNL 增加。ETC 复合物亚基和关键代谢途径的成分在这些动物的肝脏中受到调节。进一步的组学方法结合分离的肝线粒体和原代肝细胞的功能测定表明,SREBP-1c 诱导的脂肪性肝导致氧化磷酸化的底物限制,诱导复合物 II 活性增强。观察到的线粒体基因表达增加可能表明存在一种对抗作用。总之,可用底物向激活的 DNL 的转移导致电子流增加,主要通过复合物 II,以补偿细胞增加的能量需求。在 SREBP-1c 动物模型中观察到的能量代谢关键化合物的重排可能解释了人类 MAFLD 早期观察到的线粒体功能的初始增加。