Suppr超能文献

基于硫脲-异氰酸酯的共价有机框架材料,具有可调节的表面电荷和表面积,用于从水介质中去除亚甲基蓝和甲基橙

Thiourea-Isocyanate-Based Covalent Organic Frameworks with Tunable Surface Charge and Surface Area for Methylene Blue and Methyl Orange Removal from Aqueous Media.

作者信息

Suner Selin S, Demirci Sahin, Sutekin Duygu S, Yilmaz Selehattin, Sahiner Nurettin

机构信息

Department of Chemistry & Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey.

Department of Chemistry, Hacettepe University, Beytepe, Ankara 06800, Turkey.

出版信息

Micromachines (Basel). 2022 Jun 13;13(6):938. doi: 10.3390/mi13060938.

Abstract

A thiourea hexamethylene diisocyanate covalent organic framework (TH COF) was synthesized by adjusting the surface charge and surface area. The surface charge value of TH COF, −3.8 ± 0.5 mV, can be changed to −29.1 ± 0.4 mV by treatment with NaOH (dp-TH) and 17.1 ± 1.0 mV by treatment with HCl (p-TH). Additionally, the surface area of TH COF was 39.3 m2/g, whereas the surface area of dp-TH COF and p-TH COF structures were measured as 41.4 m2/g and 42.5 m2/g, respectively. However, the COF structure had a better adsorption capability with acid and base treatments, e.g., dp-TH COF absorbed 5.5 ± 0.3 mg/g methylene blue (MB) dye, and p-TH COF absorbed 25.9 ± 1.4 mg/g methyl orange (MO) dye from 100 mL 25 ppm aqueous dye solutions, thereby increasing the MB and MO absorption amounts of the TH COF structure. Furthermore, by calculating the distribution, selectivity, and relative selectivity coefficients, the absorption capacity order was determined as dp-TH > TH > p-TH COFs for the MB dye, whereas it was p-TH > TH > dp-TH COFs for the MO dye. Finally, the reusability of dp-TH COF for MB absorption and p-TH COF for MO absorption were investigated. After five repeated uses, dp-TH COF retained 64.6 ± 3.7% of its absorption ability, whereas p-TH COF preserved 79.7 ± 3.2% of its absorption ability relative to the initial absorption amount.

摘要

通过调节表面电荷和表面积合成了一种硫脲六亚甲基二异氰酸酯共价有机框架(TH COF)。TH COF的表面电荷值为−3.8 ± 0.5 mV,用NaOH处理(dp - TH)后可变为−29.1 ± 0.4 mV,用HCl处理(p - TH)后变为17.1 ± 1.0 mV。此外,TH COF的表面积为39.3 m²/g,而dp - TH COF和p - TH COF结构的表面积分别测定为41.4 m²/g和42.5 m²/g。然而,经过酸碱处理后,COF结构具有更好的吸附能力,例如,dp - TH COF从100 mL 25 ppm的水性染料溶液中吸附了5.5 ± 0.3 mg/g的亚甲基蓝(MB)染料,p - TH COF吸附了25.9 ± 1.4 mg/g的甲基橙(MO)染料,从而增加了TH COF结构对MB和MO的吸附量。此外,通过计算分布系数、选择性系数和相对选择性系数,确定了MB染料的吸附容量顺序为dp - TH > TH > p - TH COF,而MO染料的吸附容量顺序为p - TH > TH > dp - TH COF。最后,研究了dp - TH COF对MB吸附和p - TH COF对MO吸附的可重复使用性。经过五次重复使用后,相对于初始吸附量,dp - TH COF保留了其吸附能力的64.6 ± 3.7%,而p - TH COF保留了其吸附能力的79.7 ± 3.2%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d470/9229544/4119befcfaa7/micromachines-13-00938-g001.jpg

相似文献

3
A pH-dependent and charge selective covalent organic framework for removal of dyes from aqueous solutions.
J Hazard Mater. 2024 Sep 5;476:135075. doi: 10.1016/j.jhazmat.2024.135075. Epub 2024 Jul 4.
5
β-Ketoenamine Covalent Organic Frameworks-Effects of Functionalization on Pollutant Adsorption.
Polymers (Basel). 2022 Jul 29;14(15):3096. doi: 10.3390/polym14153096.
7
Covalent organic frameworks for membrane separation.
Chem Soc Rev. 2019 May 20;48(10):2665-2681. doi: 10.1039/c8cs00919h.
9
Constructing Stable and Porous Covalent Organic Frameworks for Efficient Iodine Vapor Capture.
Macromol Rapid Commun. 2021 Jul;42(13):e2100032. doi: 10.1002/marc.202100032. Epub 2021 May 29.
10
Synthesizing covalent organic frameworks for unprecedented iodine capture performance.
Heliyon. 2024 Feb 14;10(4):e25921. doi: 10.1016/j.heliyon.2024.e25921. eCollection 2024 Feb 29.

引用本文的文献

1
Selective Adsorption of Methyl Orange and Methylene Blue by Porous Carbon Material Prepared From Potassium Citrate.
ACS Omega. 2023 Sep 15;8(38):35024-35033. doi: 10.1021/acsomega.3c04124. eCollection 2023 Sep 26.
2
Degradation of Organic Methyl Orange (MO) Dye Using a Photocatalyzed Non-Ferrous Fenton Reaction.
Nanomaterials (Basel). 2023 Feb 6;13(4):639. doi: 10.3390/nano13040639.

本文引用的文献

1
Polyureas Versatile Polymers for New Academic and Technological Applications.
Polymers (Basel). 2021 Dec 15;13(24):4393. doi: 10.3390/polym13244393.
3
Modeling of type IV and V sigmoidal adsorption isotherms.
Phys Chem Chem Phys. 2019 Mar 6;21(10):5614-5626. doi: 10.1039/c8cp07751g.
4
Constructing Universal Ionic Sieves via Alignment of Two-Dimensional Covalent Organic Frameworks (COFs).
Angew Chem Int Ed Engl. 2018 Dec 3;57(49):16072-16076. doi: 10.1002/anie.201809907. Epub 2018 Nov 8.
5
Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review.
Sci Total Environ. 2018 Nov 1;640-641:772-797. doi: 10.1016/j.scitotenv.2018.05.355. Epub 2018 Jun 5.
6
Cascade reactions of nitrogen-substituted isocyanates: a new tool in heterocyclic chemistry.
Chem Sci. 2016 Jan 1;7(1):315-328. doi: 10.1039/c5sc03197d. Epub 2015 Sep 23.
7
Covalent Organic Frameworks: From Materials Design to Biomedical Application.
Nanomaterials (Basel). 2017 Dec 28;8(1):15. doi: 10.3390/nano8010015.
8
Crystallization of Covalent Organic Frameworks for Gas Storage Applications.
Molecules. 2017 Jul 10;22(7):1149. doi: 10.3390/molecules22071149.
9
Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: A review.
Adv Colloid Interface Sci. 2017 Jul;245:20-39. doi: 10.1016/j.cis.2017.04.015. Epub 2017 Apr 26.
10
Nanoscale covalent organic frameworks as smart carriers for drug delivery.
Chem Commun (Camb). 2016 Mar 18;52(22):4128-31. doi: 10.1039/c6cc00853d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验