Wu Zheng, Xu Taosheng, Ruan Lujie, Guan Jingfei, Huang Shihua, Dong Xiaoping, Li Huamei, Jia Yanmin
Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China.
College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China.
Nanomaterials (Basel). 2022 Jun 9;12(12):1981. doi: 10.3390/nano12121981.
Mechanical energy derived from friction is a kind of clean energy which is ubiquitous in nature. In this research, two-dimensional graphite carbon nitride (g-CN) is successfully applied to the conversion of nitrogen (N) fixation through collecting the mechanical energy generated from the friction between a g-CN catalyst and a stirring rod. At the stirring speed of 1000 r/min, the tribocatalytic ammonia radical (NH) generation rate of g-CN can achieve 100.56 μmol·L·g·h using methanol as a positive charge scavenger, which is 3.91 times higher than that without any scavengers. Meanwhile, ammonia is not generated without a catalyst or contact between the g-CN catalyst and the stirring rod. The tribocatalytic effect originates from the friction between the g-CN catalyst and the stirring rod which results in the charges transfer crossing the contact interface, then the positive and negative charges remain on the catalyst and the stirring rod respectively, which can further react with the substance dissolved in the reaction solution to achieve the conversion of N to ammonia. The effects of number and stirring speed of the rods on the performance of g-CN tribocatalytic N fixation are further investigated. This excellent and efficient tribocatalysis can provide a potential avenue towards harvesting the mechanical energy in a natural environment.
由摩擦产生的机械能是一种在自然界中普遍存在的清洁能源。在本研究中,通过收集二维石墨相氮化碳(g-CN)催化剂与搅拌棒之间摩擦产生的机械能,成功将其应用于固氮转化。在1000转/分钟的搅拌速度下,以甲醇作为正电荷清除剂时,g-CN的摩擦催化氨自由基(NH)生成速率可达100.56 μmol·L·g·h,这比没有任何清除剂时高出3.91倍。同时,没有催化剂或g-CN催化剂与搅拌棒不接触时不会产生氨。摩擦催化效应源于g-CN催化剂与搅拌棒之间的摩擦,这导致电荷通过接触界面转移,然后正电荷和负电荷分别留在催化剂和搅拌棒上,它们可进一步与反应溶液中溶解的物质反应,实现氮向氨的转化。进一步研究了棒的数量和搅拌速度对g-CN摩擦催化固氮性能的影响。这种优异且高效的摩擦催化可为在自然环境中收集机械能提供一条潜在途径。