Suppr超能文献

使用迁移学习模型的软投票集成来检查水下船体表面状况。

Inspection of Underwater Hull Surface Condition Using the Soft Voting Ensemble of the Transfer-Learned Models.

机构信息

School of Mechanical Engineering, Korea University of Technology and Education, Cheonan 31253, Korea.

SLM Global Co., Ltd., Daejeon 34037, Korea.

出版信息

Sensors (Basel). 2022 Jun 10;22(12):4392. doi: 10.3390/s22124392.

Abstract

In this study, we propose a method for inspecting the condition of hull surfaces using underwater images acquired from the camera of a remotely controlled underwater vehicle (ROUV). To this end, a soft voting ensemble classifier comprising six well-known convolutional neural network models was used. Using the transfer learning technique, the images of the hull surfaces were used to retrain the six models. The proposed method exhibited an accuracy of 98.13%, a precision of 98.73%, a recall of 97.50%, and an F-score of 98.11% for the classification of the test set. Furthermore, the time taken for the classification of one image was verified to be approximately 56.25 ms, which is applicable to ROUVs that require real-time inspection.

摘要

在这项研究中,我们提出了一种使用遥控水下机器人(ROUV)相机获取的水下图像来检查船体表面状况的方法。为此,我们使用了一个由六个著名卷积神经网络模型组成的软投票集成分类器。通过使用迁移学习技术,我们使用船体表面的图像对这六个模型进行了重新训练。对于测试集的分类,所提出的方法的准确率为 98.13%,精度为 98.73%,召回率为 97.50%,F1 得分为 98.11%。此外,我们验证了对一张图像进行分类所需的时间约为 56.25 毫秒,这适用于需要实时检查的 ROUV。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea6f/9231155/a11ed8437236/sensors-22-04392-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验