Suppr超能文献

基于集成微调卷积神经网络的皮肤镜图像分类方法。

Dermoscopic Image Classification Method Using an Ensemble of Fine-Tuned Convolutional Neural Networks.

机构信息

School of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China.

Anhui Key Laboratory of Electric Drive and Control, Anhui Polytechnic University, Wuhu 241002, China.

出版信息

Sensors (Basel). 2022 May 30;22(11):4147. doi: 10.3390/s22114147.

Abstract

Aiming at the problems of large intra-class differences, small inter-class differences, low contrast, and small and unbalanced datasets in dermoscopic images, this paper proposes a dermoscopic image classification method based on an ensemble of fine-tuned convolutional neural networks. By reconstructing the fully connected layers of the three pretrained models of Xception, ResNet50, and Vgg-16 and then performing transfer learning and fine-tuning the three pretrained models with the ISIC 2016 Challenge official skin dataset, we integrated the outputs of the three base models using a weighted fusion ensemble strategy in order to obtain a final prediction result able to distinguish whether a dermoscopic image indicates malignancy. The experimental results show that the accuracy of the ensemble model is 86.91%, the precision is 85.67%, the recall is 84.03%, and the F1-score is 84.84%, with these four evaluation metrics being better than those of the three basic models and better than some classical methods, proving the effectiveness and feasibility of the proposed method.

摘要

针对皮肤镜图像中存在的类内差异大、类间差异小、对比度低、数据集小且不平衡等问题,提出了一种基于微调卷积神经网络集成的皮肤镜图像分类方法。通过对 Xception、ResNet50 和 Vgg-16 三个预训练模型的全连接层进行重构,然后使用 ISIC 2016 挑战赛官方皮肤数据集对三个预训练模型进行迁移学习和微调,采用加权融合集成策略对三个基础模型的输出进行集成,得到最终的预测结果,用于区分皮肤镜图像是否恶性。实验结果表明,集成模型的准确率为 86.91%,精度为 85.67%,召回率为 84.03%,F1 值为 84.84%,这四个评价指标均优于三个基础模型和一些经典方法,证明了所提方法的有效性和可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/889f/9185225/9e43fa7d856a/sensors-22-04147-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验