Suppr超能文献

利用微观仿真评估自动驾驶汽车对道路拥堵的影响。

Assessing the Impacts of Autonomous Vehicles on Road Congestion Using Microsimulation.

机构信息

Department of Industrial and Systems Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.

Hanshin Expressway Co., Ltd., Osaka 553-0003, Japan.

出版信息

Sensors (Basel). 2022 Jun 10;22(12):4407. doi: 10.3390/s22124407.

Abstract

The introduction of autonomous vehicles has been considered as a possible option for reducing traffic congestion in many transport studies. Many types of models, in particular car-following microsimulation models have been adopted in most studies. The impacts of autonomous vehicles (AVs) on congestion, however, have not yet been concluded. This could be because different researchers use different forms of car-following models to assess these impacts, or because the utilised modelling approaches and their parameters are different in different studies. In particular, two of the important parameters that are associated with car-following models are the used values for maximum acceleration and the average desired time gaps. While the values of these parameters can be adjusted and controlled by the ACC controllers in the AV, they can also be controlled by the users. Therefore, assigning unrealistic values to these parameters could well result in unrealistic conclusions. This paper investigated the impacts of the maximum acceleration and the average desired time gaps on congestion levels using the loss-time indicator. The analysis was carried out on the Hanshin expressway in Japan and was tested and assessed using the Helly (FACC) car-following microsimulation model. This includes estimating the values of the desired time gap from real traffic time-gap distributions. The Hanshin expressway is an urban toll highway of 273 km that extends from Osaka to Kobe, representing the Hanshin area in Japan. The Hanshin highway serves a huge traffic volume that consists of private and freight vehicles that operate within the Hanshin area. This area represents one of three major municipal areas in Japan including Tokyo and Nagoya. A total of 740,000 vehicles per day travel on the expressway. As a result, there is significant congestion on the Hanshin expressway. There have been various plans put in place to ease congestion ranging from building new roads to the implementation of traffic-demand-management measures. However, the predictions of the impacts of such measures do not provide any evidence that they would ease traffic congestion. Other possible measures that could be investigated for easing traffic congestion include technology-based solutions such as autonomous vehicles. The modelling results recommend that the results obtained from microsimulation models should be taken with care, and good attention should be paid to the parameters used and their values in the model. The values assigned to driving-behaviour parameters, the maximum values of acceleration, and the time-gap settings, for example, control the final outcomes of the models.

摘要

自动驾驶车辆的引入被认为是许多交通研究中减少交通拥堵的一种可行方案。在大多数研究中,采用了多种模型,特别是跟驰微观模拟模型。然而,自动驾驶车辆(AVs)对拥堵的影响尚未得出结论。这可能是因为不同的研究人员使用不同形式的跟驰模型来评估这些影响,或者因为不同研究中使用的建模方法及其参数不同。特别是,与跟驰模型相关的两个重要参数是使用的最大加速度值和平均期望时间间隔值。虽然这些参数的值可以通过 AV 中的 ACC 控制器进行调整和控制,但也可以由用户控制。因此,赋予这些参数不切实际的值可能会导致不切实际的结论。本文使用损失时间指标研究了最大加速度和平均期望时间间隔对拥堵水平的影响。该分析在日本阪神高速公路上进行,并使用 Helly(FACC)跟驰微观模拟模型进行了测试和评估。这包括从实际交通时间间隔分布中估计期望时间间隔的值。阪神高速公路是一条 273 公里长的城市收费高速公路,从大阪延伸至神户,代表日本的阪神地区。阪神高速公路服务于一个巨大的交通量,由在阪神地区运营的私人和货运车辆组成。该地区是日本三个主要市区之一,包括东京和名古屋。每天有 74 万辆车在高速公路上行驶。因此,阪神高速公路的交通非常拥堵。为了缓解拥堵,已经制定了各种计划,包括修建新路和实施交通需求管理措施。然而,这些措施的影响预测并没有提供任何证据表明它们可以缓解交通拥堵。其他可能用于缓解交通拥堵的措施包括基于技术的解决方案,例如自动驾驶车辆。建模结果建议,应谨慎对待微观模拟模型得出的结果,并应特别注意模型中使用的参数及其值。例如,驾驶行为参数、最大加速度值和时间间隔设置的值控制着模型的最终结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c55d/9227443/2e3aa9b7ffb1/sensors-22-04407-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验