Suppr超能文献

基于人工神经网络的叶片弹簧系统振动特性分析。

Analysis of the Vibration Characteristics of a Leaf Spring System Using Artificial Neural Networks.

机构信息

Department of Mechatronics Engineering, Faculty of Engineering, University of Erciyes, Kayseri 38039, Turkey.

Department of Mechatronics, University of Kayseri, Kayseri 38280, Turkey.

出版信息

Sensors (Basel). 2022 Jun 14;22(12):4507. doi: 10.3390/s22124507.

Abstract

The real-time vibrations occurring in a leaf spring system may cause undesirable effects, such as stresses, strains, deflections, and surface deformations over the system. In order to detect the most appropriate working conditions in which the leaf spring system will work more stably and also to design optimized leaf spring systems, these external effects have to be detected with high accuracy. In this work, artificial neural network-based estimators have been proposed to analyze the vibration effects on leaf spring systems. In the experimental studies carried out, the vibration effects of low, medium, and high-pressure values applied by a hydraulic piston on a steel leaf spring system have been analyzed by a 3-axial accelerometer. After the experimental studies, the Radial Basis Artificial Neural Network (RBANN) and Cascade-Forward Back-Propagation Artificial Neural Network (CFBANN) based nonlinear artificial neural network structures have been proposed to analyze the vibration data measured from the leaf spring system under relevant working conditions. The simulation results represent that the RBANN structure can estimate the real-time vibrations occurring on the leaf spring system with higher accuracy and reaches lower RMS error values when compared to the CFBANN structure. In general, it can be concluded that the RBANN and CFBANN network structures can successfully be used in the estimation of real-time vibration data.

摘要

在片簧系统中发生的实时振动可能会导致不良影响,例如在系统上产生应力、应变、挠度和表面变形。为了检测片簧系统将更稳定地工作的最合适的工作条件,并设计优化的片簧系统,必须高精度地检测这些外部影响。在这项工作中,提出了基于人工神经网络的估计器来分析片簧系统的振动效应。在进行的实验研究中,通过三轴加速度计分析了由液压活塞施加在钢片簧系统上的低、中、高压值对振动的影响。在实验研究之后,提出了基于径向基人工神经网络 (RBANN) 和级联前馈反向传播人工神经网络 (CFBANN) 的非线性人工神经网络结构,以分析在相关工作条件下从片簧系统测量到的振动数据。模拟结果表明,与 CFBANN 结构相比,RBANN 结构可以更高的精度估计片簧系统上发生的实时振动,并达到更低的均方根误差值。总的来说,可以得出结论,RBANN 和 CFBANN 网络结构可以成功地用于实时振动数据的估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3043/9229648/c58574ff53f5/sensors-22-04507-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验