Suppr超能文献

用于多模态车辆路径预测的概率交通运动标注。

Probabilistic Traffic Motion Labeling for Multi-Modal Vehicle Route Prediction.

机构信息

Fakultät Elektro- und Informationstechnik, Technische Hochschule Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany.

Escuela Técnica Superior de Ingeniería Industrial, Universidad de Castilla-La Mancha, Calle Altagracia 50, 13001 Ciudad Real, Spain.

出版信息

Sensors (Basel). 2022 Jun 14;22(12):4498. doi: 10.3390/s22124498.

Abstract

The prediction of the motion of traffic participants is a crucial aspect for the research and development of Automated Driving Systems (ADSs). Recent approaches are based on multi-modal motion prediction, which requires the assignment of a probability score to each of the multiple predicted motion hypotheses. However, there is a lack of ground truth for this probability score in the existing datasets. This implies that current Machine Learning (ML) models evaluate the multiple predictions by comparing them with the single real trajectory labeled in the dataset. In this work, a novel data-based method named Probabilistic Traffic Motion Labeling (PROMOTING) is introduced in order to (a) generate probable future routes and (b) estimate their probabilities. PROMOTING is presented with the focus on urban intersections. The generation of probable future routes is (a) based on a real traffic dataset and consists of two steps: first, a clustering of intersections with similar road topology, and second, a clustering of similar routes that are driven in each cluster from the first step. The estimation of the route probabilities is (b) based on a frequentist approach that considers how traffic participants will move in the future given their motion history. PROMOTING is evaluated with the publicly available Lyft database. The results show that PROMOTING is an appropriate approach to estimate the probabilities of the future motion of traffic participants in urban intersections. In this regard, PROMOTING can be used as a labeling approach for the generation of a labeled dataset that provides a probability score for probable future routes. Such a labeled dataset currently does not exist and would be highly valuable for ML approaches with the task of multi-modal motion prediction. The code is made open source.

摘要

交通参与者的运动预测是自动驾驶系统(ADS)研发的关键环节。近期的方法基于多模态运动预测,需要为多个预测运动假设中的每一个分配一个概率得分。然而,现有的数据集缺乏该概率得分的真实基准。这意味着当前的机器学习(ML)模型通过将多个预测与数据集中标注的单一真实轨迹进行比较来评估这些预测。在这项工作中,引入了一种名为概率交通运动标注(PROMOTING)的新数据驱动方法,以便(a)生成可能的未来路径,(b)估计它们的概率。PROMOTING 的重点是城市交叉口。可能的未来路径的生成(a)基于真实交通数据集,包括两个步骤:首先,对具有相似道路拓扑的交叉口进行聚类,其次,对每个聚类中的相似路线进行聚类,这些路线是从第一步中驱动的。路线概率的估计(b)基于一种频率主义方法,该方法考虑了给定交通参与者的运动历史,他们将来会如何移动。PROMOTING 使用公共的 Lyft 数据库进行评估。结果表明,PROMOTING 是一种估计城市交叉口交通参与者未来运动概率的合适方法。在这方面,PROMOTING 可以用作生成具有可能未来路线概率得分的标注数据集的标注方法。这样的标注数据集目前不存在,对于具有多模态运动预测任务的 ML 方法来说将具有很高的价值。该代码已开源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc77/9228008/f2d9c94da3e6/sensors-22-04498-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验