Suppr超能文献

利用纹理分析和功能磁共振成像参数鉴别直肠癌 T1-2 期和 T3a 期肿瘤。

Distinguishing T1-2 and T3a tumors of rectal cancer with texture analysis and functional MRI parameters.

机构信息

Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.

出版信息

Diagn Interv Radiol. 2022 May;28(3):200-207. doi: 10.5152/dir.2022.20872.

Abstract

PURPOSE We aimed to investigate whether the texture analysis and functional magnetic resonance imaging (fMRI) could differentiate rectal cancer pathological stages T1-2 (pT1-2) and T3a (pT3a). METHODS Eighty-two rectal adenocarcinoma patients at stage pT1-2 and pT3a received T2 and fMRI examination before surgery. The latter included apparent diffusion coefficient (ADC) sequence, dynamic contrast enhancement (DCE) MRI, and intravoxel incoherent motion (IVIM) diffusion weighted imaging. Patients were grouped into early stage (pT1-2) and advanced stage (pT3a). The MRI accuracy in diagnosing rectal cancer before surgery was calculated. The differences in clinicopathological variables, quantitative parameters including ADC values, IVIM parameters (perfusion fraction [f], true diffusion coefficient [D], and pseudo- diffusion coefficient [D*]), DCE MRI parameters (transfer constant [Ktrans], reflux constant [Kep], and extravascular extracellular fractional volume [Ve]), and texture features were compared between the groups. Receiver operating characteristic (ROC) curves of texture features and fMRI parameters were generated to distinguish pT1-2 and pT3a tumors. The multivariate analysis was used to develop a predictive model and to find independent risk factors. Hosmer-Lemeshow test was used to see the fitness of the model. DeLong test was applied to compare the ROC curves of different features. Correlation of texture features and fMRI parameters with stage were calculated using r (Spearman's rank correlation coefficient). RESULTS The preoperative accuracy in differentiating pT1-2 from pT3a rectal cancer using MRI was 74.39%. Kep, Ve, and ADC showed significant differences between the groups. Kep and ADC showed negative correlation with stage. Ve correlated positively with stage. Twenty-five texture features from T2 images showed significant differences between groups, and S(0,2)SumOfSqs and WavEnLH_s_2 among these showed better performance, showing negative correlation with stage. The area under the curve (AUC) values of S(0,2)SumOfSqs, WavEnLH_s_2, ADC, Kep, and Ve were 0.721, 0.699, 0.690, 0.666, and 0.653, respectively. The multivariate analysis showed that S(0,2) SumOfSqs, WavEnLH_s_2, and ADC are risk factors for advanced tumors, and the logistic model built by Kep, Ve, S(0,2)SumOfSqs, WavEnLH_s_2, and ADC has the AUC, sensitivity, and specificity of 0.833, 88.5%, and 73.3%, respectively. ROC curve of the model showed statistical significance between S(0,2)SumOfSqs, ADC, Kep, and Ve. The P value of the Hosmer-Lemeshow test was 0.65. CONCLUSION S(0,2)SumOfSqs, WavEnLH_s_2, and ADC are risk factors for advanced rectal cancer, and the model built by Kep, Ve, S(0,2)SumOfSqs, WavEnLH_s_2, and ADC has better performance than using a single method. The application of above combinations could be beneficial to patients' accurate and individualized treatments.

摘要

目的 本研究旨在探讨纹理分析和功能磁共振成像(fMRI)是否可区分直肠腺癌 T1-2 期(pT1-2)和 T3a 期(pT3a)。

方法 82 例直肠腺癌 pT1-2 期和 pT3a 期患者在术前接受 T2 期和 fMRI 检查。后者包括表观扩散系数(ADC)序列、动态对比增强(DCE)MRI 和体素内不相干运动(IVIM)扩散加权成像。将患者分为早期(pT1-2)和晚期(pT3a)。计算术前 MRI 对直肠腺癌的诊断准确率。比较两组间临床病理变量、定量参数(ADC 值、IVIM 参数[灌注分数(f)、真扩散系数(D)和假性扩散系数(D*)]、DCE MRI 参数[转移常数(Ktrans)、回流常数(Kep)和血管外细胞外容积分数(Ve)]和纹理特征的差异。绘制纹理特征和 fMRI 参数的受试者工作特征(ROC)曲线,以区分 pT1-2 和 pT3a 肿瘤。采用多变量分析建立预测模型并寻找独立风险因素。Hosmer-Lemeshow 检验用于检验模型的拟合优度。采用 DeLong 检验比较不同特征的 ROC 曲线。采用 r(Spearman 秩相关系数)计算纹理特征和 fMRI 参数与分期的相关性。

结果 术前 MRI 区分 pT1-2 期和 pT3a 期直肠腺癌的准确率为 74.39%。Kep、Ve 和 ADC 在两组间存在显著差异。Kep 和 ADC 与分期呈负相关,Ve 与分期呈正相关。T2 图像的 25 个纹理特征在组间存在显著差异,其中 S(0,2)SumOfSqs 和 WavEnLH_s_2 表现更佳,与分期呈负相关。S(0,2)SumOfSqs、WavEnLH_s_2、ADC、Kep 和 Ve 的曲线下面积(AUC)值分别为 0.721、0.699、0.690、0.666 和 0.653。多变量分析显示,S(0,2)SumOfSqs、WavEnLH_s_2 和 ADC 是晚期肿瘤的风险因素,由 Kep、Ve、S(0,2)SumOfSqs、WavEnLH_s_2 和 ADC 构建的逻辑模型的 AUC、敏感度和特异度分别为 0.833、88.5%和 73.3%。模型的 ROC 曲线在 S(0,2)SumOfSqs、ADC、Kep 和 Ve 之间显示出统计学意义。Hosmer-Lemeshow 检验的 P 值为 0.65。

结论 S(0,2)SumOfSqs、WavEnLH_s_2 和 ADC 是晚期直肠腺癌的风险因素,由 Kep、Ve、S(0,2)SumOfSqs、WavEnLH_s_2 和 ADC 构建的模型比单一方法的性能更佳。上述组合的应用有利于患者的准确个体化治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验