Suppr超能文献

虾废料衍生多孔碳吸附剂:机器学习的性能、机制和应用。

Shrimp waste-derived porous carbon adsorbent: Performance, mechanism, and application of machine learning.

机构信息

Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA.

Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA.

出版信息

J Hazard Mater. 2022 Sep 5;437:129266. doi: 10.1016/j.jhazmat.2022.129266. Epub 2022 Jun 2.

Abstract

Aquaculture generates significant amount of processing wastes (more than 500 million pounds annually in the United States), the bulk of which ends up in the environment or is used in animal feed. Proper utilization of shrimp waste can increase their economic value and divert them from landfills. In this study, shrimp waste was converted to a porous carbon (named SPC) via direct pyrolysis and activation. SPC was characterized, and its performance for adsorbing ciprofloxacin from simulated water, natural waters, and wastewater was benchmarked against a commercial powdered activated carbon (PAC). The surface area of SPC (2262 m/g) exceeded that of PAC (984 m/g) due to abundance of micropores and mesopores. The adsorption of ciprofloxacin by SPC was thermodynamically spontaneous (ΔG = -19 kJ/mol) and fast (k = 1.05/min) at 25 °C. The capacity of SPC for ciprofloxacin (442 mg/g) was higher than that of PAC (181 mg/g). SPC also efficiently and simultaneously removed low concentrations (200 µg/L) of ciprofloxacin, long-chain per- and polyfluoroalkyl substances (PFAS), and Cu ions from water. An artificial neural network function was derived to predict ciprofloxacin adsorption and identify the relative contribution of each input parameter. This study demonstrates a sustainable and commercially viable pathway to reuse shrimp processing wastes.

摘要

水产养殖产生了大量的加工废物(仅美国每年就超过 5 亿磅),其中大部分最终进入环境或用于动物饲料。合理利用虾废物可以提高其经济价值,并防止其进入垃圾填埋场。在这项研究中,虾废物通过直接热解和活化转化为多孔碳(命名为 SPC)。对 SPC 进行了表征,并将其从模拟水、天然水和废水中吸附环丙沙星的性能与商业粉末状活性炭(PAC)进行了基准比较。由于微孔和中孔丰富,SPC 的比表面积(2262 m²/g)超过了 PAC(984 m²/g)。SPC 对环丙沙星的吸附在 25°C 时是热力学自发的(ΔG = -19 kJ/mol)且快速(k = 1.05/min)。SPC 对环丙沙星(442 mg/g)的吸附容量高于 PAC(181 mg/g)。SPC 还能有效地同时从水中去除低浓度(200 µg/L)的环丙沙星、长链全氟和多氟烷基物质(PFAS)以及 Cu 离子。衍生了一个人工神经网络函数来预测环丙沙星的吸附,并确定每个输入参数的相对贡献。这项研究展示了一种可持续且具有商业可行性的虾加工废物再利用途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验