Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, UP, 201314, India.
Eur J Med Chem. 2022 Sep 5;239:114534. doi: 10.1016/j.ejmech.2022.114534. Epub 2022 Jun 15.
Constant emergence of drug-resistant Plasmodium falciparum warrants urgent need for effective and inexpensive drugs. Herein, phthalimide (Pht) analogs possessing the bioactive scaffolds, benzimidazole and 1,2,3-triazole, were evaluated for in vitro and in vivo anti-plasmodial activity without any apparent hemolysis, or cytotoxicity. Analogs 4(a-e) inhibited the growth of 3D7 and RKL-9 strains at submicromolar concentrations. Defects were observed during parasite egress from or invasion of the red blood cells. Mitochondrial membrane depolarization was measured as one of the causes of cell death. Phts 4(a-e) in combination with artemisinin exhibited two-to three-fold increased efficacy. Biophysical and biochemical analysis suggest that Pht analogs mediate plasmodial growth inhibition by interacting with tubulin protein of the parasite. Lastly, Phts 4(a-e) significantly decreased parasitemia and extended host survival in murine model Plasmodium berghei ANKA infection. Combined, the data indicate that Pht analogs should be further explored, which could offer novel value to the antimalarial drug development pipeline.
不断出现的耐药性恶性疟原虫迫切需要有效且廉价的药物。本文评估了具有生物活性支架苯并咪唑和 1,2,3-三唑的邻苯二甲酰亚胺(Pht)类似物的体外和体内抗疟原虫活性,而没有明显的溶血或细胞毒性。类似物 4(a-e) 以亚微摩尔浓度抑制 3D7 和 RKL-9 株的生长。在寄生虫从红细胞逸出或入侵过程中观察到缺陷。线粒体膜去极化被测量为细胞死亡的原因之一。与青蒿素联合使用时,Phts 4(a-e) 的功效提高了两到三倍。生物物理和生化分析表明,Pht 类似物通过与寄生虫的微管蛋白相互作用来抑制疟原虫的生长。最后,Phts 4(a-e) 显著降低了疟原虫感染小鼠模型中的疟原虫血症并延长了宿主的存活时间。综上所述,数据表明应进一步探索 Pht 类似物,这可能为抗疟药物开发提供新的价值。