Suppr超能文献

应用计算机辅助检测(CAD)软件自动检测不同参数下 SDCT 和 LDCT 扫描下的结节。

Application of computer-aided detection (CAD) software to automatically detect nodules under SDCT and LDCT scans with different parameters.

机构信息

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Dadao 1095(#), Wuhan, 430030, PR China.

Department of Radiology, Shenzhen Maternity & Child Healthcare Hospital, Affiliated to Southern Medical University, Hongli, Shenzhen, 518028, PR China.

出版信息

Comput Biol Med. 2022 Jul;146:105538. doi: 10.1016/j.compbiomed.2022.105538. Epub 2022 Apr 17.

Abstract

PURPOSE

To explore the application of computer-aided detection (CAD) software on automatically detecting nodules under standard-dose CT (SDCT) and low-dose CT (LDCT) scans with different parameters including definition modes and blending levels of adaptive statistical iterative reconstruction (ASIR), whose influence was important to optimize radiology workflow serving for clinical work.

MATERIALS AND METHODS

117 patients underwent SDCT and LDCT scans. The comprehensive performance of CAD in detect pulmonary nodules including under different ASIR blending levels (0%, 60%, and 80%) and high-definition (HD) or non-HD modes were assessed. The true positive (TP) rate, false positive (FP) rate and the sensitivity were recorded.

RESULTS

The stand-alone sensitivity of CAD system was 78.03% (515/660) in SDCT images and 70.15% (456/650) on LDCT images (p < 0.05). The sensitivity of CAD system to pulmonary nodules under non-HD mode was higher than that under HD mode. The detectability of nodules in images reconstructed with 60% and 80% ASIR was found significantly superior to that with 0% ASIR (p < 0.001). The overall sensitivity of CAD system on LDCT images reconstructed with 60% ASIR under HD mode was greater than that with 0% ASIR (p < 0.05), but lower than that with 80% ASIR. However, under non-HD mode, CAD demonstrated a comparable performance on LDCT images reconstructed with 60% ASIR to those reconstructed with 80% ASIR.

CONCLUSION

Using the CAD system to detect pulmonary nodules on LDCT images with appropriate levels of ASIR could maintain high diagnostic sensitivity while reducing the radiation dose, which is useful to optimize the radiology workflow.

摘要

目的

探讨计算机辅助检测(CAD)软件在不同参数(包括定义模式和自适应统计迭代重建(ASIR)的混合水平)下自动检测标准剂量 CT(SDCT)和低剂量 CT(LDCT)扫描下结节的应用,这对优化为临床工作服务的放射科工作流程非常重要。

材料和方法

117 名患者接受 SDCT 和 LDCT 扫描。评估 CAD 在不同 ASIR 混合水平(0%、60%和 80%)和高清(HD)或非 HD 模式下检测肺结节的综合性能。记录真阳性(TP)率、假阳性(FP)率和敏感性。

结果

SDCT 图像中 CAD 系统的独立敏感性为 78.03%(515/660),LDCT 图像中为 70.15%(456/650)(p<0.05)。CAD 系统对非 HD 模式下肺结节的敏感性高于 HD 模式。60%和 80% ASIR 重建图像中结节的可检测性明显优于 0% ASIR(p<0.001)。60% ASIR 下 HD 模式重建的 LDCT 图像中 CAD 系统的整体敏感性大于 0% ASIR(p<0.05),但小于 80% ASIR。然而,在非 HD 模式下,CAD 在 60% ASIR 重建的 LDCT 图像和 80% ASIR 重建的 LDCT 图像上具有相当的性能。

结论

使用 CAD 系统检测 LDCT 图像中的肺结节,适当的 ASIR 水平可以在降低辐射剂量的同时保持高诊断敏感性,这有助于优化放射科工作流程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验