Department of Digital Media Technology, Hangzhou Dianzi University, Hangzhou, 310018, China.
School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, 518000, China.
Comput Biol Med. 2022 Aug;147:105729. doi: 10.1016/j.compbiomed.2022.105729. Epub 2022 Jun 17.
Semi-supervised learning has become a popular technology in recent years. In this paper, we propose a novel semi-supervised medical image classification algorithm, called Pseudo-Labeling Generative Adversarial Networks (PLGAN), which only uses a small number of real images with few labels to generate fake images or mask images to enlarge the sample size of the labeled training set. First, we combine MixMatch to generate pseudo labels for the fake and unlabeled images to do the classification. Second, contrastive learning and self-attention mechanisms are introduced into PLGAN to exclude the influence of unimportant details. Third, the problem of mode collapse in contrastive learning is well addressed by cyclic consistency loss. Finally, we design global and local classifiers to complement each other with the key information needed for classification. The experimental results on four medical image datasets show that PLGAN can obtain relatively high learning performance by using few labeled and unlabeled data. For example, the classification accuracy of PLGAN is 11% higher than that of MixMatch with 100 labeled images and 1000 unlabeled images on the OCT dataset. In addition, we also conduct other experiments to verify the effectiveness of our algorithm.
半监督学习近年来已成为一种热门技术。在本文中,我们提出了一种新颖的半监督医学图像分类算法,称为伪标签生成对抗网络(PLGAN),它仅使用少量带少量标签的真实图像生成假图像或掩模图像来扩大标记训练集的样本量。首先,我们结合 MixMatch 为假图像和未标记图像生成伪标签以进行分类。其次,将对比学习和自注意力机制引入 PLGAN 以排除不重要细节的影响。第三,通过循环一致性损失很好地解决了对比学习中的模式崩溃问题。最后,我们设计了全局和局部分类器,通过互补的方式来互补分类所需的关键信息。在四个医学图像数据集上的实验结果表明,PLGAN 可以使用少量带标签和未标记的数据获得相对较高的学习性能。例如,在 OCT 数据集上,使用 100 个带标签图像和 1000 个未标记图像时,PLGAN 的分类准确率比 MixMatch 高 11%。此外,我们还进行了其他实验以验证我们算法的有效性。