Suppr超能文献

用于预测术后放疗对切除的主要涎腺癌总体生存获益的预测模型。

Prediction model to estimate overall survival benefit of postoperative radiotherapy for resected major salivary gland cancers.

机构信息

Cancer Care Northwest, Spokane Valley, WA, USA.

Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA.

出版信息

Oral Oncol. 2022 Sep;132:105955. doi: 10.1016/j.oraloncology.2022.105955. Epub 2022 Jun 22.

Abstract

OBJECTIVES

To develop and validate a prediction model to estimate overall survival (OS) with and without postoperative radiotherapy (PORT) for resected major salivary gland (SG) cancers.

MATERIALS AND METHODS

Adults in the National Cancer Database diagnosed with invasive non-metastatic major SG cancer between 2004 and 2015 were identified. Exclusion criteria included prior malignancy, pT1N0 or unknown stage, no or unknown surgery, and neoadjuvant therapy. Cox proportional hazards models evaluated the effect of covariates on OS. A multivariate regression model was utilized to predict 2-, 5-, and 10-year OS. Internal cross-validation was performed using 50-50 hold-out and Harrell's concordance index.

RESULTS

18,400 subjects met inclusion criteria, including 9,721 (53%) who received PORT. Distribution of SG involvement was 86% parotid, 13% submandibular, and 1% sublingual. Median follow-up for living subjects was 4.9 years. PORT was significantly associated with improved OS for the following subgroups by log-rank test: pT3 (p < 0.001), pT4 (p < 0.001), high grade (p < 0.001), node-positive (p < 0.001), and positive margin (p < 0.001). The following variables were incorporated into a multivariate model: age, sex, Charlson-Deyo comorbidity score, involved SG, pathologic T-stage, grade, margin status, ratio of nodal positivity, and PORT. The resulting model based on data from 6,138 subjects demonstrated good accuracy in predicting OS, with Harrell's concordance index of 0.73 (log-rank p < 0.001).

CONCLUSION

This cross-validated prediction model estimates 2-, 5-, and 10-year differences in OS based on receipt of PORT for resected major SG cancers using readily available clinicopathologic features. Clinicians can utilize this tool to aid personalized adjuvant therapy decisions.

摘要

目的

建立并验证一个预测模型,用于预测接受和不接受术后放疗(PORT)的切除性大涎腺癌患者的总生存(OS)。

材料和方法

从 2004 年至 2015 年期间,国家癌症数据库中诊断为侵袭性非转移性大涎腺癌的成年人被确定为研究对象。排除标准包括既往恶性肿瘤、pT1N0 或未知分期、无手术或未知手术、新辅助治疗。Cox 比例风险模型评估了协变量对 OS 的影响。利用多元回归模型预测 2 年、5 年和 10 年的 OS。采用 50-50 分割和 Harrell 一致性指数进行内部交叉验证。

结果

符合纳入标准的 18400 例患者,其中 9721 例(53%)接受了 PORT。SG 受累的分布为 86%腮腺、13%颌下腺和 1%舌下腺。对存活患者的中位随访时间为 4.9 年。通过对数秩检验,PORT 与以下亚组的 OS 改善显著相关:pT3(p<0.001)、pT4(p<0.001)、高级别(p<0.001)、淋巴结阳性(p<0.001)和阳性切缘(p<0.001)。将以下变量纳入多变量模型:年龄、性别、Charlson-Deyo 合并症评分、受累 SG、病理 T 分期、分级、切缘状态、淋巴结阳性率和 PORT。该模型基于 6138 例患者的数据建立,在预测 OS 方面具有较好的准确性,Harrell 一致性指数为 0.73(对数秩 p<0.001)。

结论

该经交叉验证的预测模型利用易于获得的临床病理特征,根据切除性大涎腺癌患者是否接受 PORT,预测 OS 的 2 年、5 年和 10 年差异。临床医生可以使用该工具来辅助制定个体化辅助治疗决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验