Suppr超能文献

优化最大熵与随机森林模型在中国预测斑羚潜在分布的比较。

Comparison between optimized MaxEnt and random forest modeling in predicting potential distribution: A case study with Quasipaa boulengeri in China.

机构信息

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Ecology, Lanzhou University, Lanzhou 730000, China.

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

出版信息

Sci Total Environ. 2022 Oct 10;842:156867. doi: 10.1016/j.scitotenv.2022.156867. Epub 2022 Jun 22.

Abstract

Random forest (RF) and MaxEnt models are shallow machine learning approaches that perform well in predicting species' potential distributions. RF models can produce robust results with the default automatic configuration in most cases, but it is necessary for MaxEnt to optimize the model settings to improve the performance, and the predictive performance difference between optimized MaxEnt and RF is uncertain. To explore this issue, the potential distribution of the endangered amphibian Quasipaa boulengeri in China was predicted using optimized MaxEnt and RF models. A total of 408 occurrence data were selected, 1000 locations were generated as pseudo-absence data by the geographic distance method, and 10,000 sites were selected as background data by creating a bias file. Partial ROC at different thresholds and success rate curves were used to compare the predictive performances between optimized MaxEnt and RF. Our results showed that the RF and optimized MaxEnt models both had good performance in predicting the potential distribution of Q. boulengeri, with the RF model performing slightly better whether based on partial ROC or success rate curves. Furthermore, the core suitable habitat regions of Q. boulengeri identified by RF and MaxEnt were similar and were all located in the Sichuan, Chongqing, Hubei, Hunan, and Guizhou provinces. However, the RF model produced a habitat suitability map with higher discrimination and greater heterogeneity. Temperature annual range, mean temperature of the driest quarter, and annual precipitation were the vital environmental variables limiting the distribution of Q. boulengeri. The RF model is the stronger machine learner. We believe it may be more applicable in predicting the native potential distributions of species with sufficient occurrence data, given the additional predictive detail, the simplicity of use, the computational time involved, and the operational complexity.

摘要

随机森林(RF)和最大熵(MaxEnt)模型是浅层机器学习方法,在预测物种潜在分布方面表现良好。RF 模型在大多数情况下可以使用默认的自动配置产生稳健的结果,但 MaxEnt 需要优化模型设置才能提高性能,并且优化后的 MaxEnt 和 RF 的预测性能差异是不确定的。为了探讨这个问题,使用优化后的 MaxEnt 和 RF 模型预测了中国濒危两栖动物贵州疣螈的潜在分布。共选择了 408 个出现数据,使用地理距离法生成了 1000 个位置的伪缺失数据,通过创建偏差文件选择了 10000 个位置作为背景数据。使用部分 ROC 曲线和成功率曲线在不同阈值下比较了优化后的 MaxEnt 和 RF 之间的预测性能。结果表明,RF 和优化后的 MaxEnt 模型在预测贵州疣螈潜在分布方面都表现良好,RF 模型的性能略好于基于部分 ROC 或成功率曲线的模型。此外,RF 和 MaxEnt 识别的贵州疣螈核心适宜生境区域相似,均位于四川、重庆、湖北、湖南和贵州。然而,RF 模型产生的栖息地适宜性图具有更高的区分度和更大的异质性。温度年较差、最干季度平均温度和年降水量是限制贵州疣螈分布的关键环境变量。RF 模型是更强的机器学习器。我们认为,在具有足够出现数据的情况下,它可能更适用于预测物种的原生潜在分布,因为它具有额外的预测细节、使用的简单性、涉及的计算时间和操作复杂性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验