Ohno Yoshiharu, Yui Masao, Takenaka Daisuke, Yoshikawa Takeshi, Koyama Hisanobu, Kassai Yoshimori, Yamamoto Kaori, Oshima Yuka, Hamabuchi Nayu, Hanamatsu Satomu, Obama Yuki, Ueda Takahiro, Ikeda Hirotaka, Hattori Hidekazu, Murayama Kazuhiro, Toyama Hiroshi
Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan.
Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan.
J Magn Reson Imaging. 2023 Jan;57(1):259-272. doi: 10.1002/jmri.28288. Epub 2022 Jun 26.
Computed diffusion-weighted imaging (cDWI) is a mathematical computation technique that generates DWIs for any b-value by using actual DWI (aDWI) data with at least two different b-values and may improve differentiation of metastatic from nonmetastatic lymph nodes.
To determine the appropriate b-value for cDWI to achieve a better diagnostic capability for lymph node staging (N-staging) in non-small cell lung cancer (NSCLC) patients compared to aDWI, short inversion time (TI) inversion recovery (STIR) imaging, or positron emission tomography with 2-[fluorine-18] fluoro-2-deoxy-d-glucose combined with computed tomography (FDG-PET/CT).
Prospective.
A total of 245 (127 males and 118 females; mean age 72 years) consecutive histopathologically confirmed NSCLC patients.
FIELD STRENGTH/SEQUENCE: A 3 T, half-Fourier single-shot turbo spin-echo sequence, electrocardiogram (ECG)-triggered STIR fast advanced spin-echo (FASE) sequence with black blood and STIR acquisition and DWI obtained by FASE with b-values of 0 and 1000 sec/mm .
From aDWIs with b-values of 0 and 1000 (aDWI ) sec/mm , cDWI using 400 (cDWI ), 600 (cDWI ), 800 (cDWI ), and 2000 (cDWI ) sec/mm were generated. Then, 114 metastatic and 114 nonmetastatic nodes (mediastinal and hilar lymph nodes) were selected and evaluated with a contrast ratio (CR) for each cDWI and aDWI, apparent diffusion coefficient (ADC), lymph node-to-muscle ratio (LMR) on STIR, and maximum standard uptake value (SUV ).
Receiver operating characteristic curve (ROC) analysis, Youden index, and McNemar's test.
Area under the curve (AUC) of CR was significantly larger than the CR , CR , CR , aCR , and SUV . Comparison of N-staging accuracy showed that CR was significantly higher than CR , CR , ADC, aCR , and SUV , although there were no significant differences with CR (P = 0.99) and LMR (P = 0.99).
cDWI with b-value at 600 sec/mm may have potential to improve N-staging accuracy as compared with aDWI, STIR, and PET/CT.
2 TECHNICAL EFFICACY: Stage 2.
计算机扩散加权成像(cDWI)是一种数学计算技术,通过使用至少两个不同b值的实际扩散加权成像(aDWI)数据生成任意b值的扩散加权成像,可能有助于提高转移性淋巴结与非转移性淋巴结的鉴别能力。
确定cDWI的合适b值,以实现与aDWI、短反转时间(TI)反转恢复(STIR)成像或2-[氟-18]氟-2-脱氧-D-葡萄糖联合计算机断层扫描(FDG-PET/CT)相比,在非小细胞肺癌(NSCLC)患者的淋巴结分期(N分期)中具有更好的诊断能力。
前瞻性研究。
共245例(男性127例,女性118例;平均年龄72岁)经组织病理学确诊的NSCLC患者。
场强/序列:采用3T、半傅里叶单次激发快速自旋回波序列、心电图(ECG)触发的黑血STIR快速进阶自旋回波(FASE)序列及STIR采集,以及通过FASE获得的b值为0和1000秒/毫米²的扩散加权成像。
从b值为0和1000秒/毫米²的aDWI中,生成b值为400(cDWI400)、600(cDWI600)、800(cDWI800)和2000(cDWI2000)秒/毫米²的cDWI。然后,选择114个转移性和114个非转移性淋巴结(纵隔和肺门淋巴结),并对每个cDWI和aDWI的对比率(CR)、表观扩散系数(ADC)、STIR上的淋巴结与肌肉比值(LMR)以及最大标准摄取值(SUVmax)进行评估。
受试者操作特征曲线(ROC)分析、约登指数和麦克尼马尔检验。
CR的曲线下面积(AUC)显著大于CR400、CR800、CR2000、aCR和SUVmax。N分期准确性比较显示,CR600显著高于CR400、CR800、ADC、aCR和SUVmax,尽管与CR800(P = 0.99)和LMR(P = 0.99)无显著差异。
与aDWI、STIR和PET/CT相比,b值为600秒/毫米²的cDWI可能具有提高N分期准确性的潜力。
2级。技术效能:2级。