Division of Soil Science and Agricultural Chemistry (SSAC), ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
Division of Soil Science and Agricultural Chemistry (SSAC), ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
J Environ Manage. 2022 Sep 15;318:115559. doi: 10.1016/j.jenvman.2022.115559. Epub 2022 Jun 23.
It is imperative to find suitable strategies to utilize the native soil phosphorus (P), as natural rock phosphate deposits are at a verge of depletion. We explored two such cost-effective and eco-friendly strategies for native soil P solubilization: silicon (Si)-rich agro-wastes (as Si source) and phosphate solubilizing microorganism (PSM). An incubation study was conducted in a sub-tropical Alfisol for 90 days at 25 °C under field capacity moisture. A factorial completely randomized design with 3 factors, namely: Si sources (three levels: sugarcane bagasse ash, rice husk ash, and corn cob ash), PSM (two levels: without PSM, and with PSM); and Si doses [three levels: no Si (Si), 125 (Si) and 250 (Si) mg Si kg soil] was followed. The PSM increased solution P and soluble Si level by ∼22.2 and 1.88%, respectively, over no PSM; whereas, Si and Si increased solution P by ∼60.4 and 77.1%, as well as soluble Si by ∼41.5 and 55.5%, respectively, over Si. Also, interaction of PSM × Si doses was found significant (P<0.05). Activities of soil enzymes (dehydrogenase, acid phosphatase) and microbial biomass P also increased significantly both with PSM and Si application. Overall, PSM solubilized ∼4.18 mg kg of inorganic P and mineralized ∼5.92 mg kg of organic P; whereas, Si and Si solubilized ∼3.85 and 5.72 mg kg of inorganic P, and mineralized ∼4.15 and 5.37 mg kg of organic P, respectively. Path analysis revealed that inorganic P majorly contributed to total P solubilization; whereas, soluble and loosely bound, iron bound and aluminium bound P significantly influenced the inorganic P solubilization. Thus, utilization of such wastes as Si sources will not only complement the costly P fertilizers, but also address the waste disposal issue in a sustainable manner.
必须找到合适的策略来利用土壤中的固有磷(P),因为天然磷矿石储量已接近枯竭。我们探索了两种经济且环保的土壤固有磷溶解策略:富含硅(Si)的农业废弃物(作为 Si 源)和溶磷微生物(PSM)。在 25°C 下,在田间持水量条件下进行了一项为期 90 天的亚热带 Alfisol 孵化研究。采用 3 个因子的完全随机因子设计,即:Si 源(3 个水平:甘蔗渣灰、稻壳灰和玉米芯灰)、PSM(2 个水平:无 PSM 和有 PSM);以及 Si 剂量[3 个水平:无 Si(Si)、125(Si)和 250(Si)mg Si kg 土壤]。与无 PSM 相比,PSM 分别将溶液 P 和可溶性 Si 水平提高了约 22.2%和 1.88%;而 Si 和 Si 分别将溶液 P 提高了约 60.4%和 77.1%,可溶性 Si 提高了约 41.5%和 55.5%。此外,还发现 PSM×Si 剂量的相互作用具有显著性(P<0.05)。土壤酶(脱氢酶、酸性磷酸酶)和微生物生物量 P 的活性也随着 PSM 和 Si 的应用而显著增加。总的来说,PSM 溶解了约 4.18mgkg 的无机 P,并矿化了约 5.92mgkg 的有机 P;而 Si 和 Si 分别溶解了约 3.85 和 5.72mgkg 的无机 P,并矿化了约 4.15 和 5.37mgkg 的有机 P。路径分析表明,无机 P 是总 P 溶解的主要贡献者;而可溶性和松散结合态、铁结合态和铝结合态 P 则显著影响无机 P 的溶解。因此,利用这些废物作为 Si 源不仅可以补充昂贵的 P 肥料,而且还可以以可持续的方式解决废物处理问题。