Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany.
Curr Opin Genet Dev. 2022 Aug;75:101945. doi: 10.1016/j.gde.2022.101945. Epub 2022 Jun 24.
Hematopoietic stem cell (HSC) functions have long been difficult to study under physiological conditions. Recently, genetic in vivo approaches have been developed for lineage tracing of differentiating progeny emerging from HSC over time (output), and for high-resolution, endogenous barcoding to uncover the lineages that HSC contribute to (fate). Such fate measurements have in principle led to the recognition of three major fate groups of HSC: multilineage, myelo-erythroid-restricted, and inactive, that is, no or no known progeny, in addition to a minor group of megakaryocyte-restricted HSC. The most recent RNA-barcoding experiments have begun to directly link fate measurements with transcriptome reading in HSC clones and single HSC, which yielded insights into transcriptional signatures associated with fate patterns. Here, we discuss these findings in light of the structure of the hematopoietic differentiation hierarchy, and we provide an outlook on strategies to dissect molecular determinants of HSC fates.
造血干细胞(HSC)的功能在生理条件下一直难以研究。最近,已经开发出了用于追踪 HSC 随时间产生的分化后代(输出)的遗传体内方法,以及用于揭示 HSC 贡献的谱系的高分辨率、内源性条形码(命运)的方法。这种命运测量原则上导致了对 HSC 的三种主要命运群体的识别:多谱系、骨髓-红细胞受限和无活性,即没有或没有已知的后代,除了少数巨核细胞受限的 HSC 群体。最近的 RNA 条形码实验已经开始将命运测量与 HSC 克隆和单个 HSC 的转录组读数直接联系起来,这为与命运模式相关的转录特征提供了深入了解。在这里,我们根据造血分化层次结构的结构讨论这些发现,并提供了一种策略来剖析 HSC 命运的分子决定因素。