Suppr超能文献

在解释点数据集的空间模式时对用户行为的分析

Analysis of User Behaviour While Interpreting Spatial Patterns in Point Data Sets.

作者信息

Knura Martin, Schiewe Jochen

机构信息

Lab for Geoinformatics and Geovisualization (g2lab), HafenCity University Hamburg, Hamburg, Germany.

出版信息

KN J Cartogr Geogr Inf. 2022;72(3):229-242. doi: 10.1007/s42489-022-00111-9. Epub 2022 Jun 17.

Abstract

Volunteered geographic information is often generated as voluminous point data, leading to geometric and thematic clutter when presented on maps. To solve these clutter problems, cartography provides various point generalization operations such as aggregation, simplification or selection. While these operations reduce the total number of points and therefore improve the readability, information preservation could be harmed when specific spatial patterns disappear through the generalization process, possibly leading to false interpretations. However, sets of map generalization constraints that maintain spatial pattern characteristics of point data are still missing. To define constraints that support synoptic interpretation tasks, user behaviour while solving these tasks has to be analysed first. We conduct a study where participants have to perform such interpretation tasks, using a new method that combines think-aloud interviews and techniques from visual analytics. We reveal that the point density of a dataset has the biggest impact on the user behaviour and the respective task-solving strategy, independently from the actual task type executed. Furthermore, our results show that the graphical map complexity only has a minor impact on the user behaviour, and there is no evidence that point data cardinality influences task execution and the solution-finding strategies.

摘要

volunteered地理信息通常以大量的点数据形式生成,在地图上呈现时会导致几何和主题混乱。为了解决这些混乱问题,制图学提供了各种点概括操作,如聚合、简化或选择。虽然这些操作减少了点的总数,从而提高了可读性,但当特定的空间模式在概括过程中消失时,信息保存可能会受到损害,这可能导致错误的解释。然而,仍然缺少一组能够保持点数据空间模式特征的地图概括约束。为了定义支持概要解释任务的约束,首先必须分析用户在解决这些任务时的行为。我们进行了一项研究,让参与者使用一种结合了出声思考访谈和视觉分析技术的新方法来执行此类解释任务。我们发现,数据集的点密度对用户行为和相应的任务解决策略影响最大,与执行的实际任务类型无关。此外,我们的结果表明,图形地图复杂性对用户行为的影响较小,没有证据表明点数据基数会影响任务执行和解决方案寻找策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e43/9205413/780b0b5678e9/42489_2022_111_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验