Suppr超能文献

信息可视化中杂乱消除的分类法。

A taxonomy of clutter reduction for information visualisation.

作者信息

Ellis Geoffrey, Dix Alan

机构信息

Lancaster University.

出版信息

IEEE Trans Vis Comput Graph. 2007 Nov-Dec;13(6):1216-23. doi: 10.1109/TVCG.2007.70535.

Abstract

Information visualisation is about gaining insight into data through a visual representation. This data is often multivariate and increasingly, the datasets are very large. To help us explore all this data, numerous visualisation applications, both commercial and research prototypes, have been designed using a variety of techniques and algorithms. Whether they are dedicated to geo-spatial data or skewed hierarchical data, most of the visualisations need to adopt strategies for dealing with overcrowded displays, brought about by too much data to fit in too small a display space. This paper analyses a large number of these clutter reduction methods, classifying them both in terms of how they deal with clutter reduction and more importantly, in terms of the benefits and losses. The aim of the resulting taxonomy is to act as a guide to match techniques to problems where different criteria may have different importance, and more importantly as a means to critique and hence develop existing and new techniques.

摘要

信息可视化是指通过可视化表示来深入了解数据。这些数据通常是多变量的,而且数据集越来越大。为了帮助我们探索所有这些数据,人们使用各种技术和算法设计了大量可视化应用程序,包括商业应用和研究原型。无论它们是用于地理空间数据还是倾斜的层次数据,大多数可视化都需要采用策略来处理由于数据过多而无法在过小的显示空间中显示所导致的显示过于拥挤的问题。本文分析了大量这些减少杂乱的方法,从它们如何处理减少杂乱的角度进行分类,更重要的是,从利弊的角度进行分类。所得分类法的目的是作为一种指南,将技术与不同标准可能具有不同重要性的问题相匹配,更重要的是作为一种批判并因此开发现有和新技术的手段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验