Suppr超能文献

基于长短期记忆网络-自回归整合移动平均模型的通信网络异常检测与量化

Detection and quantification of anomalies in communication networks based on LSTM-ARIMA combined model.

作者信息

Xue Sheng, Chen Hualiang, Zheng Xiaoliang

机构信息

School of Safety Science and Engineering, Anhui University of Science and Technology, Tianjiaan District, Huainan, 232001 Anhui China.

School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, 232001 China.

出版信息

Int J Mach Learn Cybern. 2022;13(10):3159-3172. doi: 10.1007/s13042-022-01586-8. Epub 2022 Jun 17.

Abstract

The anomaly detection for communication networks is significant for improve the quality of communication services and network reliability. However, traditional communication monitoring methods lack proactive monitoring and real-time alerts and the prediction effect of a single machine learning model on communication data containing multiple features is not ideal. To solve the problem, A prediction-then-detection anomaly detection method was proposed, and quantitative assessment of network anomalies was developed. Specifically, anomaly-free data was obtained by eliminating outliers, and the long short-term memory (LSTM) and autoregressive integral moving average (ARIMA) were combined via residual weighting to predict the future state of the key performance indicators (KPI) without outliers. Anomalies were identified using the error comparison between the prediction and actual values, and the network condition was quantified using the scoring method. It is observed that the proposed LSTM-ARIMA hybrid model has better prediction effect, which can well represent the performance of KPIs of the future state, and the prediction-then-detection anomaly detection method has excellent performance on both precision and recall.

摘要

通信网络的异常检测对于提高通信服务质量和网络可靠性具有重要意义。然而,传统的通信监测方法缺乏主动监测和实时警报,并且单个机器学习模型对包含多个特征的通信数据的预测效果并不理想。为了解决该问题,提出了一种先预测后检测的异常检测方法,并开发了网络异常的定量评估方法。具体而言,通过消除异常值获得无异常数据,并通过残差加权将长短期记忆(LSTM)和自回归积分移动平均(ARIMA)相结合,以预测无异常的关键性能指标(KPI)的未来状态。利用预测值与实际值之间的误差比较来识别异常,并使用评分方法对网络状况进行量化。结果表明,所提出的LSTM-ARIMA混合模型具有更好的预测效果,能够很好地表示未来状态KPI的性能,并且先预测后检测的异常检测方法在精度和召回率方面均具有优异的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b45/9205417/4602ad548365/13042_2022_1586_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验